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Abstract

Three mechanisms which can induce thermo-hydraulic oscillations at

near-critical and at super-critical pressures _re distinguished and dis-

cussed.

Experiments show that low frequency flow oscillations are most pre-

i

valent in systems of practical interest. A quantitative formulation and

analysis is therefore presented concerned with predicting the onset of

these "chugging" oscillations as function of fluid properties_ system

geometry and operating conditions.

The problem is analyzed by perturbing the inlet flow_ linearizing

the set of governinB equations and integrating them along the heated duct

to obtain the characteristic equation. The latter is given by a third

order exponential polynomial with two time delays.

Conditions leading to aperiodic as well as to periodic flow

phenonema are investigated. The first pertains to the possibility of

flow excur>ion.the latter to the onset of flow os_;illation.

Stability maps and stabil_ty criteria are presented which_ previously_

were not available in the literature. They can be used to determine:

a) The region of stable a_e operation and

b) The effects which various parameters have on either promoting i

or preventing the appearance of flow oscillations.

The effects of various parameters are analyzed and improvements are
A

suggested whereby the onset of flow oscillation can be eliminated. I

IThe similarity between "chugging" combustion instabilities and

thermally induced flow oscillations at near-and super-critical pressures

is pointed out.

, A review of the present understanding of the near-critical thermo-

_ dynamic region is also presented.
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i. Research Obiectives

This _esearch was conducted to determine the fundamental nature of

oscillatio_ and of instabilities in the flow of cryogenic fluids with he_t

addition.

The investigation was motivated by the fact Ehat severe oscillations

have been experienced in rocket engines heat exchangers utilizing oxygen b

and hydrogep at both subcritical and supercritical pressures.

The particular objectives of this investigation were:

I. To distinguish a number of mechanisms which may be respon-

• sible for thermally induced flow oscillations aL near cri-

tical and at supercritical pressures.

2. To present a quantitative formulation of the meehanisnm

which appear to be most significant from the point of sys-

!
tem design and operation.

$

3. To predict the onset of these oscillations in terms of the

geometry and of the operating condition of the system.

4. To analyze the consequences of the theoretical predictions

and to suggest improvements whereby the onset of these

oscillations can be eliminated.

I
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2. Summary and Conclusions •
v

I. Mechanisms Leading to Unstable Operation /

Three mechanisms which can induce thermo-hydraulic oscillations at near

critical and at supercritical pressures have been distinguished.
J

One is caused by the variation of the heat transfer coefficient at the

transposed i.e._ at the pseudo-critical point.

7he second is caused by the effects of large compressibillgy in the

critical thermodynamics region.

Finally, the third mechanism is caused by variations of flow character-

istics brought about by variations of fluid density during the heating pro-

cess. The propagations of these variations through the system introduce

various time delays which_ under certain _onditions_ can cause unstable flow.

This last mechanism_ which induces low frequency oscillations_ was

investigated in detail because available experimental data show that this

type of flow oscillations is most prevalent in systems of practical interest.

2. Formulation of the Problem

The problem was formulated in terms of an equation of state and of

three field equations describing the conservation of mass_ energy and mo-

mentum.

The subcritical pressure range of operation was differentiated from the

supercritical one by using the appropriate equation of state.

The problem was analyzed by perturbing the inlet flow_ linearlzing the

set of governing equations and integrating them along the heated duct to I

obt_n the characteristic equation.

ii 1

l
¢1

_ ._ ........
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3. The Characteristic Equation

The characteristic equation is given by a third order exponential poly--

nomial with two time const_nts_ (see E q. V-15). It is expressed in terms of

iluid properties_ of system geometry and of operating conditions by means of

i

influecce coefficients (see Eq. V-16 throu_ Eq. V-22).

The influence coefficients cxprcss the effects of the in!_t flow

perturbation and of the space lag pert rbat1_ on the various pressure drops

of the _ystem. By introducing various definltions for the average, for the

log.mean and for the mean denslties and velocitles it is shown that each

pressure drop is weighed with respect to a different velocity. This

result_ which follows_ from the integration of the governing set of _

equationsj i.e._ from th, oi_L_ibu_ed parameter analysis_ could not have

been obtained from a_ analysis, based on "lumped" p:'rameters. Consequently

the accuracy of _n analysis based on this latter aDp_,_ch can be estimated

by means of the res,_Ics obtained in this investiga,'u:

The characteristic equation was used to obtain _,_bility maps and

stability criteria wh_ch_ previously_ were not a.... :,_le in the literature.

The stability maps and criteria can be used _ _ ".mlne

a. The region of stably _n4 of unscabl ,_ration and

b. The effects which various paramete_ may have on either promoting i
I

or on preventing the appearance o! flow oscillations.

Conditions leading to aperiodic as w_]l as to periodic flow phenomena

were investigated. The first pertain to the possibility of flow excursion

whereas the _econd pertain to the onset of flow oscillation. For this latter
[.

case the flow stability in systems with low Inlet subco611ng was considered

separately from that correspondlhg to systems with high inlet subcoolln 8.

III
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7hu stabLlity problem at intermediate subcooling will be considered in a

future report_

4_ Excursive Flow Instability

J

It was shown that_ at supercritical pre_su_=. - a flow system with heat

addLtlon can undergo flow excursions because th ,_aulic characteristics

c f the system are given by a _bic relation betweee the pressure and the

mass flow rate (see Eq. VI-20). The latter ,.s a consequence of density

_n the system. F
variations

This excursive flow instabilit_ at supercritical pressures_ is the

equlvalent of _he "ledinegg" excursive ;nstability in boiling systems at

subcritical pressures. This equivalence is _;upported by experimental data

4

(see Figur VI-I) which show that in both pressure regions, the flow system

has s_mil_r hydraulic characteristics, mR.J

A stab_!ity criterion which predicts the onset of the excursive in-

stab=lity was dec_vod in terms of system geometry_ of fluid properties and

of operating condition_ _.e._ of system pressure 3 flow rate_ inlet temp-

erature and power input (see Eq. VI-13). Various aspects of this type of

ins_bility are discussed together with provisions requir,d to prevent its

appearance (see Section VI-2).

5. Flow Oscillations at Low Inlet Subcooling

It waj shown that for a system with low Inle_ suucoollng the character- i
!

istic equation can be reduced to a second order polynom_1 with one time I

delay (see Eq. VII-?). For such a system the propensity to flow oscillation

can be analyzed by means of the stabillty maps recently presented by Bhatt

and Hsu (see Figure Vll-l). *_

IV

enD _ I
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It was shown further that_ when the ineriia can be neglected in a system " ,,,_

with low inlet subcooling then the characteristic equation reduces to a first

order exponen:i_l polynomial with one time delay (see Eq. VII-16).

For such a system the flow will be unconditionally stable if the

J

stability number Ns (defined by Eq. VII-39) is larger than unity. If

Ns is smaller than unity_ stable operation is still possible if the angular

frequency of the inlet perturbatYon is larger than the critical one (given

in Eq. VII-40) or if the transit time is shorter Shan the critical one

(given by Eq. VII-41).

The region of stable and of unstable operation are shown in a stability

map (see figure VII-2) which can be used to analyze the effects that various

parameters have on the propensity to induce or to prevent flow oscillations

(see Section VII.3).

Although the analytical predictions have not vet been tested quantita-

tively_ the trends predicted by this map and by the stability criterion
i

(see Eq. VII-22 or Eq. VII-29) are in qualitative agreement with experimental

observations (see Section VII. 3).

6. Flow Oscillation at High Inlet Subcoolin_

It was shown that when the effects of the two time d_lays can be

neglected then the characteristic equation reduce_ to a third order polynomial

(see Eq. VIII-2). A stability criterion was also derived (see Eq. VIII-15) I

Jwhich specifies the conditions for stable operation.

Various aspects of this type of oscillations were discussed together

with provisions required to prevent their appearance (see Section VIII-2).

It i8 shown that the flow is more stable at high subcoolings than at low.

Furthermore 3 it is concluded that the destabilizing effect of subcooling

V

-- _ ,,,......"--- ' _- _=_r_ ..'._--_,_'v'_-_l_ .. . ..... -_.
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must gc_ t_,_ough a maximum at intermediate range_ (see Section ViII-2)o "

7o Significance of the Results

The results of this aealysis _ndicate several improvements in the design

and/or in the operating conditions xJhich can be made to prevent the onset of

flow excurslons or of flow oscil]ations. These are discussed in more deta11

in relation to each type of instability (see Sections VI-2_ VII-3_ and

VIIi-2).

It was shown that the predominance of a particular parameter results

in a particular wave form and in particular frequency (see Eq. V!I_40 and

Eq. VIII-17) o This result indicates that the primary cause of the instability

can be determined from the trace of flow oscillations.

Perhaps the result of greatest significance revealed in the present

investigation is the similarity between the characteristic equatio_ which

_redicts "chugging" combustion instabilities and the characteristic equation

which predicts the thermally induced flow oscillations for fluids in the

near critical and in the supercritical thermodynamic region. Since it is

well known that "chugging" combustion instabilities can be stabilized by an

appropriate servo-control mechanism_ the results of this investigation

indicate that low frequency flow oscillations_ at near critical and at

supercrltical pressures may be also stabili_ed.

The preceding conclusions have not yet been tested against experimental

q

data. if confirmed_ then the results of this study will provide a method

whereby stable oTcration can be insured in an intrin_=ally unstable region.



3, Recon_endations

The recommendations listed in the four tasks belo_ _efine the effort

needed to complete and to verify the results obtained in this investigation.

I

i. Verify the stability criteria based on the second and first order

exponential polynomials which have been derived in the course of

these investigations. For this purpose use available experimental

data for various fluids at subcritical and at supereritical pres-

sures.

2. From the characteristic equation given by the third order exponential

polynomial with two time delays (Eq. V-15) derive stability maps and

stability criteria applicable to the entire range of subcoolings.

Test these results against available experimental data.
L

3. Modify the characteriscic equation to take into account the effects

of the entire flow system i.e._ of the flow loop. In particular in-

clude the effects of the inertia of the liquid in the storage tank and

in the supply lines together with the flow and elastic characteristics i

|of these lines.
i

4. Based on the results obtained from the preceding three tasks specify a

servo-co_trol mechanism which could be used to stabilize the flow ior

a system of practical interest and verify the results by experiments.

VII
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4, Nomenclature

ML_) System of Units

with H defined by _ = ML2 T-2

' Ac = cross sectional area of the duct _L2_

,I = coefficient defincd by Eq. VII-16

a = coefficient defined by Eq. VII-10

a"_ = coefficient defined by Eq. VI-21

_ = coefficient defined by Eq. VII-17

B* = coefficient defined by Eq. VI-4

b = coeff/cient defined by Eq. VII-II

b* = coefficient defined by Eqo VI-23

c = coefficient defined by Eq. VII-12

c* = coefficient defi, ed by Eq. VI-23

cp = specific heat of the fluid in the "light" fluid region [ HM-10 -I

L_D = diameter of the duct[
L

f = friction factor !

F1 = Influence coefficient defined by Eq. V-5

F2 = " Eq. V-6

F3 = " Eq. V-7

F4 = " kq. V-8

F5 = " Eq. V-9

F6 = " Eq. V-IO

F7 = " Eq. V-If

G = Mass flux density _ML'2T "I]



I = Integrals given by £q. IV-94_ IV-97_ IV-101_ IV-107_ IV-ill.

i = Enthalpy _KM- !_

ifg = Latent heat of vaporization [HM "I

i21 = Inlet subcooling [HM -I q

ki = coefficient of the inlet flow restriction -I

ke = coefficient of the exit flow restriction -

L = Total length of the heated duct _L]

Mf = Mass in the "heavy" fluid region

per unit area _ ML-2 -I

Mg = Mass in the "light" fluid region

per unit area _ML "2

Ns = Stability number defined by Eq. VII-39

P = system pressure _ML-IT-2]

Pex = Pressure rise of the external system [ML'IT-2q

Pol = Steady state pressure drop (SSPD) across inlet

orifice defined by Eq. 111-28 _ML'IT-2q

PI2 = SSPD due to friction in the heavy "fluid" region 3 defined

by Eq. III-31 _ML-IT -2q

= SSPD due to gravity in the heavy "fluid" region_
Pbf

defined by Eq. III-30 _ML'IT-2_

Pa = SSPD due to acceleration in the "light" fluid region3

defined by Eq. IV-89 _ML'IT-2_

_Pb_ = SSPD due to gravity of the "light" fluid reglon 3

deflned by Eq. IV-102 £ML'IT'2 _

m
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P23 = SSPD due to friction of the light fluid region_

defined by Eq. IV-l12_ [ML-I'I-2_

_PJ4 = SSPD across exit flow restriction defined by Eq. IV-122. ( M )

1
q = heat flux density

_-2T-I

= total heat input rate _HT -I

R = _as constant _ L2T-2@ -I

s = Exponent of the inlet velocity perturbation [ T-I _
S = Stability criterion defined by Eq VI-28 i

T = ['eriod of the inlet velocity perturbation

t = time

_ = velocity _ LT °I]

= steady state velocity in the "heavy" fluid region LT"I

Ugh) = S.S. velocity ol the light fluid region defined by Eq. IV-28.(L)

_3 = S.S. velocity at the _xit Irom the duct •

defined by Eq. IV-31. (L)

_ = average velocity in the "light" fluid region

defined by Eq. IV-32. (L)

U_m = Log mean velocity of the ''ight" fluid region

defined by Eq. _-36 (L)

um = mean velocity of the "light" fluid region

defined by Eq. IV-38. (L)

_u I = inlet velocity perturbation given by Eq. 111-7. (L)

X

m
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fJUg = ve]cc[ty pe_turbattcn cf the "light" fluid reglon

given by Eq. 7V-30.

vf = specific volume of the heavy fluid _ L3M, ]

, Vg = specific vclume of the "11ght" f1_id II3M I_

a Vfg = change r_f specific volume in va_c.rizatlcrl _13M'I_

W = total steady state mass flow rate (M],I)

2 length _L

Green letters

, _ = heated perimete_ IL_

= space lag defined by Eqo II_20 [ L _

_ = perturbstion of the s_ace lag _L

defined by Eq. Iii-23.

= amplitude cf inlet velocity _erturbation _ Lr -I _ .

"Cb = time lag, defined by Eq. i!I-18 _ T_

r3_ 1 = &][ = teta] transit time, defined by Eq. III-63 [ T_

_2 = critica] transit time 9 defined by Eq. VEI-41.

-[_ = characteristic reaction frequency_ defined by Eqo IV-21° I
J

?i = density of the "eavy" fluid _ML-3_

_g = density of the light fluid [ML -3

3 = density at the exit from the heated duct_ defined by Eqo IV-72.

_ = Io_ mean density in the light fluid regien_ defined by Eq. IV-76.

_g_ = average density in the light fluid region defined by Eq. IV-73.

_ = mean density in the "light" fluid region defined by Eq. iV-77.



6_ = angulnr frequency of the inlet velocity perturbation T -I

t_c = critical angular frequency defined by Eq. Vli-40.

= dimensionless exponent defined by Eq. VII-8.

Subscripts

0_ 1_ 2_ 3_ 4 correspond to the locations of the duct

indicated on Fig. 11-2.

i
i

i

xll

1967019449-019



5o List of Illustrations

Pa_f

Figure I-l: 7-a

Hydraulic Characteristic for Water at Supercritical

, Pressure(P = 250 atm) Flowing Threugh a Heated Duct.

Data of Semenkover for Inlet Enthalpies (Kca!/Kg) of

1-400, 2-350, 3-300_ 4-200_ 5-100 Kcal/Kg.

Figure II-l:

The System 13-a

Figure II-2: 14-a

Specific Volume and Temperature Versus Enthalpy

for Oxygen at Pr = I.i.

Figure II-3: 16-a

"Two Region" Approximation Showing the Time

Lag and the Space Lag.

Figure II-4: 20-a

The Effects of Time Lag and of Space Lag in

Inducing Flow Oscillation.

Figure VI-I: 97-a

Hydraulic Characteristics of Water Flowing

Through a Heated Duct at Subcritical and at

Supercritical Pressures. (Data of Kraslakova

and Glusker).

Figure VI-2: 97-b

Excursive Flow Instability.

- _ X!II

1967019449-020



Pa_ e

Figure VII-I: 107-a .

The Bhatt-Hsu Stability Map for the Second

Order Exponential Polynomial:

j + a_ +b + c
0

Figure VII-2: i14-_

The stability Map for the First Order

Exponential Polynomial:

S + A + B -s_= = O.

Figure VII-3:

Percentage of Heat Exchanger Data Samples l16-a

Showing Steady Operation Vs. Heat Flux

I

Per Unit Area Per Unit Mass Flow Rate

Reported by Platt and Wood. !

J

KZV
I

i i i

1967019449-021



I,, !ntrod_ction

' !.i The Problem and Its Significance

A fluid in the vicinity of the ¢riticai pclnt _s an efficient heat

transfer medium because of the ]arge specific heat and of the large co-

- _tficient of thermal e_pansion. Consequently, the demand for increased

e_ficiencv oi severa] advance_ systeF,_ generated an interest in employing

fluids at critical and supercritical pressures either as cooling or working

media. For example, nuc!ea_-_c_ets, power reactors, high pressure once-

through boilers, regenerative heat exchangers for rocket _,_--aI_L_-_w

sea water desalinization proces_are designed to operate in the critical

i and the supercritical thermodynamic region. These developments made it

1 necessary to obtain data on and to improve the understanding of th_ thermal

and the flow behavior over a broad range of fluid states.

A great rumber of investigations conducted for such a purpose have

revealed that, in the critical as well as in the supercritical thermo- i

dynamic region, flow and pressure oscillations may occur when certain

_perating conditions are reached. These oscillations were observed in

systems with forced flow as well as with natural circulation.

The occurrence of sustained pressure and flow scillations and the

attendant temperature oscillations are very undesirable and detrimental to

reliable operation of a system. Mechanical vibrations and thermal fatigue

induced by these oscillations very often result in a rupture of the duct.

In liquid propellant rocket engines flow and pressure oscillations can also

induce combustion instabilities resulting in a breakdown of the system.

-l-

i
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Furthermore. in nuclear reactor systems flow and pressure osc_llations may '

induce divergent power oscillations leading to the destluctiov of _he

entire system. Consequently, there is considerable prdctical interest and

incentive to investigate, quantitatively, the conditions leading to the
/

inception of these oscillations.
z

1.2 Previous Work

Severe pressure and flow oscillations were observed in experiments

perfurmeu with various fluid in the supercritical thermodynamic region.

Such oscillations were reported by Schmidt_ Eckert dnd Grigul! [i_ , (ammonia); .-
w

Goldman [2 3_ (water); Firstenberg_4] (water); H_rden _5_ (Freon-ll4);

Harden and Boggs _6_ , (Freon-ll4); Walker and Harden [7_,
(water, Freon-ll4,

Freon-12, carbon dioxide); Holman and Boggs [_8_, (Freo'-12) Hines and .

Wolf _91(RP-I and diethycyclohe,;ane); Platt and Wood [i0"I (oxygen);

Elienbrook, Livingood and Straight 1 , (hydrogen); Thur_ton 12 , (hydrogen,

nitrogen); Shitzman [13, 14_(water); Semenkover [15_ (water); Cornelius and

Parke: El61 (Freon-ll4); Corneliushl7 I (Freon-ll4); and Krasiakova and

Glusker _18_ (water).

For a given _!uid the characteristics (freqaency an4 amplitude) of

these oscillatiom_ varied with operating conditions. In general, two types

of oscillations were observed: acoustical and chugging oscillations. For

example, Shitzman [13_ reports that, for water at 250 atm, the pressure
and

temperature oscillations had a period of 80 se¢. and an amplitude of 25 arm.,

and of i00°C respectively. Decreasln_ the flow rate and the power density

resulted in decreasing the period to 15 sec. However, at a pressure of

5000 psi, Goldman [2, 3_rcports pressure oscillati_ns w£_h frequencies

from 1400 to 2200 cps. Simllar high frequency oscillations (I000-I0,000 cps

-2-
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psi peak to peak) _Jere reported by Hines and Wolf _9-11or RP,-Io
and 380

Three classes of prcssure oscitlations in the supercritical region

wece observed in the experiments ol Thurston _121; these were described as:

, I) Open-open pipe resonance observed at medium and high flow rate.

This mode i,_ associated wiEh the fundamental wavelength of at,

open-open pipe.

2) He!mhoitz resonance_ associated with a resonator composed of a

cavity connected to an external atmcsphere via an orifice or neck.

3} Supereritical oscillations appearing usually at low flow rates°

Hines and Wolf_9], however, report only two general types of oscilla-

tions: a high frequency (3000-75000 cps) oscillations audible as a clear

and steady scream and an osciliation with a lower frequency (600-2400 cps)

which was audible as a chugging or pulsating noise. The dominaBt frequencies
t

of these oscillations did no__tcorrespond to simple acoustic resonant fre-

quencies for the tubes.

Cornelius and Parker_16, 17_ describe in detail the two types of _

osciliations and note that the frequency of the acoustical oscillations

decreases with temperature whereas the frequency of the chugging oscillations

increases with temperature. Occasionally, both types of oscillations occured

simultaneously.

A quantitative formulation and explanation of the conditions leading

to the appearance of the pressure and flow oscillations has not been reported

yet, although several qualitative explanations have been advanced. It is

generally agreed that the osc_llations are caused by the large variations

of the thermodynamic and the transport properties of the fluid as it passes

through the critical thermodynamic region.

"3-
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Several investigators (12_ i_ 14) note that the appearance of oscil-

lations occurs when the temperature of the heating surface exceeds the

"pseudo eritical" or the "transposed" critical temperatures_ i.e._ the tem-

, perature where the specific heat reaches its maximum value (see Figure AI in

Appendix A). Oscillations were not observed if the inlet temperature was

above this temperature. From this it was concluded that the mechanism ior

driving the oscillation occurred only when a "pseudo liquid" state was present

in some parts of the heated duct.

Firstenberg (4) attributes the oscillations to the variations of the heat

transfer rates to the fluid_ whereas Goldman (2_ 3) explains the oscillations

as well as the steady state heat transfer mechanism in the critical and super-

critical thermodynamic region as "boiling like" phenomena associated with non-

equilibrium conditions. According to Goldman_ below the pseudo-critical temper-

ature the fluid is essentially a liquid_ above this temperature it behaves as a

gas. At the pseudocritical temperature, the density gradient and the specific

heat reach maximum values giving an indication of the energy required to over-

come the mutual attraction between the molecules. The fluid in the immediate

vicinity of the heated wall is in a gas-like state; whereas the bulk fluid may

still be in J_e liquid-like state. If by means of turbulent fluctuations a

liquid-like cluster is brought into contact with the heatin_ surface a large a-

mount of energy will flow from the surface tr he cluster because of the large

temperature difference and because of the high cenauctivity of the liquid-like

fluid. This energy may be large enough Lo "explode" clusters of molecules from

the liquid-like state to the gas-like state. Thus, according to Goldman (2, 3),

one may visualize the supercritical region as a region where explosions of liquid-

-4- I
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like c/:_sters into gas-like aggregates take place° Goldmae ccnsiders this

process to be similar to the formation ol bubbles in liquids during boiling

at 6ubcritical pressures°

[he conditions under which oscillations occur were summarized by
i

Goldman as follo_s:

I) Heat transfer with _whist]e" (i_e.: with osci!iaticns) occurs

opiy at hLgh heat flux densleies and with bulk te_peratures lower

than the pseudocritical temperature.

2) At a given flow rate _nd inieL temDerature_ whistles occur at

higher flux densities for higher press_ire levels.

3) At given flow rate and pressure, whistles occur at lower heat

flux densities for higher inlet temperatures,

4) At a given pressure and inlet temperature_ whistles occur at

higher hest flux densities for higher flow rates.

5) Whistles can be produced with vacious lengths of the test section,

but the heat flux or inlet temperature must _e increased to bring

it about if the tube is shortened.

Visual observation that boiling-like phenomena can exist at supercritical

pressures was reported by Griffith and SaberskiLi9Jin experiments conducted with i

R-if4 . The photographs of the process revealed a behavior similar to I

that observed in pool boiling at subcritical pressures. I

d

Simil_rly, high speed movies of hydrogen at supercritical pressures

!
taken by Graham, et al _20 1 revealed a phenomenon resembling boiling. Clusters

of low density fluid were observed rising through a denser fluid-glvlng

boiling-like appearance°

-5-
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Wolf [9_ attribute the appearance of the flow oscillations
Hines and

at supercritical pressures to the variations of liquid viscosity. They

note that a small change of temperature near the critical point results

in a large change of viscosity. Consequently, a sudden increase in walli

tem erasure could cause a thinning of the laminar boundary layer due to

variation of the _iscosity. Thinning of the boundary layer would result

in a drop of the wall temperature and a corresponding increase of viscosity.

This would cause a thicker boundary layer and produce another rise of tem-

perature, thus repeating the cycle. It was shown by Bussard and DeLauer _213

and by Harryl 22] that a viscosity-dependent mechanism can induce an unstable

flow in single phase flow systems when the absolute gas temperature is in-

J

creased by a factor of 3.-6 or more. Such flow oscillations were observed

by Guevara et al_3_ with helium flowing through a uniformly
heated

channel.

Harden and co-workers 15, 6, 7_ concluded from their experiments that

sustained pressure and flow oscillations appearea when the bulk fluid reached

a temperature at which the product of the density and enthalpy has its maximum

value° This explanation was, however, criticized by Cornelius 17 .

Cornelius and Parker I16, 17_ postulate that both acoustical and the 1
J

chugging oscillations originate in the heated boundar_.r layer. When the |

fluid in the heated boundary layer is in a "pseudo vapor" state, a pressure I

wave passing the heated surface would tend to compress the boundary layer,

improve the thermal conductivity and cause an increase of the heat transfer

coefficient. A rarefaction wave palming over the heated wall would have

just the opposite effect. Thus, this pressure--dependent--heat-transfer

rate could induce and maintain an acoustic oscillation. Cornelius and Parker



_rt_ibute the appearance of chugging oscflla_ions to "boiling_l_ke" phenomena

_nJ _ _',._J_ _mp_e_me_ of the heat _an_fe_ coefficient. A_ approx[m_t_

nume_¢al _lution verified the importance _f the heat transfer improvement

_ tr_gge_zng a_d maintainlng oscillations,

Of particular interest to the analysis p_'esented in thi_ paper are the

' e_p_rimental resu!ts of Semenkover_ [15] and of Krasiakova and Glusker _18_

fcc water at 250 arm. For a constant power input Q to the system their data

show a pressure versus mas_ flow relation that is illustrated in Figure I-i.

it _._ be seen _ha_ for large val=e_ o_ inlet enthalpy i_ there is a monotonic

_c_ea_ _,fprese_re _rop with flow _a_eo At a certain lower value of t_

_._e:._rve _ws an infle¢_kon polnto For still lower values of inlet enthalpy_

th_r_ is a region where the pressure drop decreases with increasing flow rate.

Such a pre_re drop=flow rate relation occurs in boiling systems and gives

r_e to an excursive type of instability which was analyzed first by Ledinegg "

[2_J and by numerous investigators since _25 - 47_. Consequently, the data

of [15_ 18_ tend to confirm the similarity between instabilities.observed

during subcritical boiling and those observed at supercrit[cal pressure

suggesting therefore a common mechanism.

1.3 purpose and Outline of the Analysis

From the proceeding brief review of the present understanding of flow

oscillat_ons at supercritlcal pressures_ it can be concluded that =everal modes of

oscillatlon exist. It can be expected_ therefore_ Chat several mechanisms can

be effective iv inducing unstable flow. Indeed_ as discussed in t:_ preceedlng

sectlon_ several qualitative explanations of the phenomenon have been already

advanced. (Iowever, a quantitative form_laclon of the problem is still lacklng.

m
• _ , m
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the analysis presented in this paper has four objeetives_

i) le distirguish a number of mechanisms which may be responsible for

thermally induced flow oscillations at nearcritical and at supercritical

pressures.

2) ro present a quantitative formulation of the mechanism which appears to

' be most significant from the point of view of system design and operation.

3) To predict the onset of these oscillations in terms of the geometry and

of the operating conditions of the system.

_) S_ analyze the co_sequences of the theoretical predlctions and to suggest

improvements whereby the (_set of these oseiilations can be eliminated.

rhe particular mechanism which is formulated and analyzed in this paper

is based on the effects of time lag and of density variations. It is well

known that these effects can induce combustion instabilities in liquid pro-

pellant rocket motors as discussed by Crocco and Cheng C48_. It was shown

by Profos_49_ , Wallis and Heasley_50_ and by Bour@ C51_ that the effects

of time lag and of density variations can also induce unstable flow in

boiling mixtures at subcritical pressures. The suggested similarity of

flow oscillations observed at supercritical pressures with those ob=erved in

!

two phase mixtures at subcrltical pressures prompts us to formulate and i

to analyze the problem in terms of this mechanism. In particular, the ex- i

J
perimental results of Semenkover [15_ and of Krasiakove and Glusker _18_

discussed in the preceding section, together with the chugging oscillations

described by several authors provide enough evidence to warrant a more de-

tailed analysis of flow oscillatio_at supercritical pressures in terms

of the time lag effect.

The present analysis is similar to those reported by Wallls and Heasley

"8-
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[_0] ar, d b7 Bour_ [51J in two respects: the formulation and the assumptions

a_e _e _a_. I, pa_r_icular, it Is assumed that the density of the med!,_

:¢ a functzon of en_haipy only. The effects of pressure varxations are,

r_F.erefc_ r_glected. _ As noted by Wallis and Heasley _0] _:hls assumption

results :n :he decoupling of the momentum equatlon from the enetgy and the

/

continuity equations. %he momentum equation can be integrated the_ separately

_f:.er :_e velocity and density variations are obtained from the continuity and

_be eeergy equations. Following Bourd _51] t_e problem is formulated in terms

.:fa_ equation of s_ate a_d of th_ee field eq=at_c.ns desctiuing the =cnse_

ua_:c_ of mas_ energy a_d mewentum.

from =he fact _hat the analyses of Waills and Heasley ESOJ a_dApart

LS_ were derived to predict unstable flow in boiling two p_aseGf

r=_x_ures t_e present analyses (concerned witn flow oscillations at near-

critical and at supercritical pressures) differs from tneirs in two respects:

l) the form of toe constitutive equation of state is different_ 2) the

cvarac=ezlst!c equation describing ttte aset of oscillations is different.

F_om _nis characteristic equatlon_ we s_all derive stabi!i_y maps and

s_a_i_ty inertia whicn_ previously, were no___ccav_ilablein tne literature.

The outline of the paper is as follows. In Chapter II some general

_omments are made regarding i) tne nature of the thermally induced flow

o_cillsti_ns at nearcrltlcal and at supercrltlcal pressures_ 2) the effect

of tne t_me lag_ 3) _ne implication and limitations of the assumptlo_s and

4) tee general method of solution. In Cnap=ers Ill and IV tne problem is

formulated ard the sec of governing equation is solved. Tne cnaraccerlstic

equation wnlcn predicts the onset o_ flow osclllacion _s derived in Chapter V_

_c _s cf cue form of a chlrd order exponenClal polynomial wlCh Cwo C/me

delays. From Che c_racCerlsClc eq_Cxon a criterion is derived in

WThe limitations and implications of ehis assumpelon are discussed in Chapter I1.

-9-
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Chapter VI which predicts the onset of an e×c,=rs_ve type of instabil=ty a_

supercrttical pressures.* This excursive !_stabiilty at supercrit_cal

pressure is the equivalent of the so called Ledinegg excurslve instability

for boilin_ at subcriti=al pressures. The effect of time lags in inducing

flow oscillations is analyzed in Chapters VII and VIII which con_Ider first
I

and second order expotential polynomials. Stabillty diagrams which predict

the regions of stable and unstable flow in terms of the operating parameters

are given in these two chapters together witb suggested improvements whereby

the onset of oscillations can be eliminated. The re¢ommendatloe_s for

future work and the conclusions are given in Chapters IX.

The status cf the present understanding of thermodynamic phenomena that take

place in the critic_l thermodynamic region is discussed in Appendix A.

, 1.4 The Significance of the Results

Three mechanisms which can induce thermo-hydraullc oscillations at

supercritical pressures have been distinguished in this paper. One is

caused by the variation of the heat transfer coefficient at the transposed,

l.e._ pseudo critical point. The second is caused by the effects of large

compressibility and the resultant low velocity of sound in the critical

, region. Finally, the third mechanism is caused by the large variation of flow

characteristics brought about by density variations of the fluid during the

propagations_of these variation_ in particular of theheating process. The

enthalpy and_)_ the density, through the system introduce delays whichB /

*This criterion was first derived by the writer in the Second 0varterly
Progress Report, "Investigation of the Nature of Cryogenic Fluid Flow
Instabilities in Heat Exchangers," Contract NAS8-11422. 1 February 1965.

-I0- _'
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uqder certain conditions, can cause unstable flow. Thls last mechanism, that

_nduces low frequency oscillations, is investigated in detail because ex-

perimental data show that this type of oscillation is most _revalen_.

It is shown that at supercritical pressure unsteady flow conditionsi

both excursive and oscillatory can occur. A characteristic equation is

derived that predicts the onset of flow instabilitics caused by density

variations in the critical and supercritical thermodynamic region. The

same characteristic equation can be used to predict the .nset of flow

in_sbiiitie_ in bciling at subcritical pressure, if the effect of the

relative velocity between the two phases can be neglected. Experimental

evidence shows that this effect becomes negligible at reduced pressures

above say 0.85. Consequently, at near critical and supercritical pressures,
t

the characteristic equation, which is expressed in terms of system geometry

and operative conditions, can be used to determine:

a) The region of stable and unstable behavior.

b) The effect which various parameters may have on either promoting

or on preventing the appearance of flow oscillations.

From this characteristic equation simple "rule of thumbs" criteria are

also derived based on the assumption that one or the other of the various

parameters is dominant. It is shown that the dominance of a particular

parameter results in a particular frequency and wave form. This results

permits a diagnosis of the primary cause of the Instabil_ty from the trace

of flow oscillations.

It is of particular interest to note _hat the characteristl¢ equation

derived in this paper for predlct_ng flow oscillations at supercrltlc_l

pressure is of the same form as a characteristic equation derived by Crocco _"

-11-
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and Cheng_48]to predict combusc!o_ instabilltle_ cf liquid propella_t

rc_ket mctors. _ I_ ts well established in the combustion ]Ite_*_:_ _hat

s servo-control mechanism can be used to stabxltze the Icw frequercy com-

bustion instabillty, The similarity o£ _he c_arac_erlstl¢ equ_ttcns l_

therefore_ significant because ic indicates _hat stable operat£on could

be insured also in the nearcr_tlcal and in the supe_crit:cal re_:m by

using an appropriately designed servo-c_ntrol mechanism.

*This similarity between combustion and two phax flow instabflitles should

not come as a surprise if one recalls that the processes o£ combustlon and
of boilin8 are both chemical processes Involvin8 larse enthslpy and density
changes.

-12-
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If. General Considerations

IL.! The System and the Thermodynamic Process

In order to understand the mechanisms of the thermally induced flow I
el"

' osci]lations at supercritical pressures_ It is necessary to e×amLne

briefly the system and the thermodynamic process_

The system of in:erest is shown in Figure l_T-lo It consists of a

fi'_id flowing through a heated duct of length i. Wi_l-out Ios_ of L

, genera]ity it will be assumed that the d_cL is uniformly heated at a

rate of Q. Two flow restrictions are loca_-ed one at the entrance, the

other at the exit of the duct_ ,.

The thermodynamic process starts with the fluid at a supercritical

• pressure P, entering the heated duct with velocity IAi The temperature

_ IQ, of the fluid at the inlet is well below the critical temperature ol the
w' •

fluid under considerations. As the energy is being transferred from the

heated duct to the fluid its temperature T, specif_J volume v, and enthalpy

i, will increase. Thus, the temperature T3, ac the exit may be considerably

above the critica] temperature, In a number of systems of practical interest =.

it can be assumed that this process takes place at an approximately constant

pressure, i

i

In order to formulate the problem it is necessary to specify the i
I

constitutive equation of state which describes the relation between say I

Ithe specific volume, the pressure and the enthalpy for the partlcular
I

fluid. This requires data on the thermodynamic properties of the fluid in i

the region of interest. The region of interest to this study are the _

y

nearcritical and the supercritical regions. :,
4r '_'"
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The present understanding of the thermodynamic properties and phenomena

at nearcritical and supercritica[ _ressures is reviewed in Appendix A_

It is _own there that at these pressures the fluid has the characteristics

of a liquid when the temperature is sufficiently below the critical one°
i

However. if the temperature is increased suificlently above the critical

te_perature_ the fluid will have the characteristics of a gas° This is

illustrated in Figure I!_2 which is a plot ot the sFecific volu_e and of

the temperatL:re versus the entbaLpv for oxygen at a reduced press_re ef

P =!.io
r

it can be seen frem this figure that at low e_thalpies the specific

volume is essentially constant, this is a characteristic of liquids° As

the enthaipy increases the specific volume increases approaching values

predicted by the perfect gas lawo It can be seen also that this change

from a liquid-like state (region @ = Q) to a gas_like state (region

O - @_ occurs over a transition region denoted by @ - O

on Figure 11-2.

It _ppears_ therefore, that at supercritical pressures the relation

between the specific volume and the enthalpy can be approximated by con- i

sidering three regions: a liquid-like, a transition and a gas like region°

For oxygen Figure II-2 indicates also that, as a first approximation, the

transition region can be reduced to a transition point reducing, therefore,

the problem to a "two-region" approximation.* Since oxygen is the fluid

of primary interest to this analysis, we shall use the "two-region"

*The "three region" approximation was first introduced by the writer in

analyzing the excursive instability at supercritical pressures (see foot-

note on page i0). Following this work Dr. R. Fleming, from the Research

and Development Center of the GE COo, introduced the "two region" approxi-

mation for oxygen. These two approximations are discussed further in

Appendix B.
-14-
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approximation for describing the relation between the specific volume

and Lhe enthalpy0 It is assum_ therefore, that the "heavy" fluid (of

constant density) persists until the transition point is reached; above

this point the fluid will have the properties of the :light' phase. It

remains now to define this transition point_

In boiling at subcritical pressare the transition from the heavy to

the light se corresponds to the onset of boiling. Consequently, it

wil] be assumed that in _he nearcritical region the transition point

corresponds to the enthalpy at saturation temperature.

At supercritical pressures it will be assumed that the transition point

corresponds to the transposed critical point, i.e., to the pseudo critical

point which is defined as the point where C reaches its maximum value.
, P

It is discussed in Appendix A that the locus of pseudo critical points

can be regarded as the extension of the saturation line in the super-

critical region.

II.2 Time Lag and Space Lag

It is of interest to consider now the timewise and spacewise des-

cription of the process.*

If we follow a particle from the time it enters the heated section

until it leaves it, we shall observe that its properties change from v1

*We follow here Crocco and Cheng _48] who gave an equivalent description
for combustion instabilities. The same comme_It applies to the three

sections that follow. Indeed, this reference proved to be most stimu-

lating and useful in the course of this investigation.
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and 11 at the inlet to v 3 and i3 at the exit (see Figure 11-3). In

view of the "t_o_region '' approximation we would note that the transition

" " the "light" fluid occurred when the properties (specificallyfrcm the heavv to

the e_tha_pyj reached values tbat correspond to the transition point The*

time elapsed between the iniection of the heavy particle _n the heated duct

and its tra_sf3rmation to the "light" fluid will be denoted as the time

it *s cf interest also to ccnsider the spacewise description of th_

r,rccess, in this case the time lag must be replaced by the

which ts a vectorial quantity indicating the location in tile duct where

the transformation from the "heavy" to the "light" fluid takes place.

IPe space lag is denoted by X on Figure !I-3o Of course, the space

lag can be related to the time lag when the particle velocity is known.

Like in combustion, the location in the duct where the transformation

takes place can be regarded as the source of the light J fluid. It is

obvlcus that the flow properties in the region occupied by the"light'

fluld will depend upon the intensity of this source. If it is assumed

Di I,

that the injection rate of the heavy fluid is constant and that the time

and space lags were constan_then the intensity of the source would also

be independent of time resulting in a steady flow in the "light" fluid

region, However, this is not the case because fluctuations which affect

the time lag and/or ,he injection rate are present both at supercritical

and at subcritical pressures• In the vicinity of the critical thermo-

dynamic point large fluctuations of properties, in parti=ular of density,

are observed even in non-flow systems. In boiling systems fluctuations

are always present because of variations of the rate of bubble formation _'_

-16-
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a'.J population, of flow regimes, of the heat transfer coefficients etco

Ccnseque._tly the strength _f the source may fluctuate even when the in-

ject!o.' rate is kept constamto It is evident also that variations of

in!et velocity will introduce additional effects,
0

Ihe nucleation and evaporation at subcritica! pressures and the

transformation of "heavy" clusters to "light" clusters at supercritical

_ressures are rate processes that occur during and have an elfect upon

_he length cf the time lag. Both of _besu transformation rates are af-

fected by tDe pressure, temperature and !¢ other rate processes such as

the rate of energy transfer, flow rate too Tf one of these factors

changes or fluctuates, the transforma¢ion rate_ _,_I! _]uctuate also

resulting in a fluctuation of the time lag, i.eo, in the fluctuation

cf the source. Since the source affects the flow conditions in the "light"

f_uid regicn the flow in this region may become oscillatory°

1! 3 C)r_anized Oscillations

Oscillations of a system can be always produced if properly excited.

Such oscillations can be distinguished by a characteristic time, i.e.,

period if the process is periodic or by a relaxation time if it is

aperiodic.

Like in combustion and following Crocco and Cheng [481we shall

distinguish two cases: random fluctuations and organized or coordinated

oscillations.

As random fluctuation we consider those that are similar to fluctuations

observed in ordinary turbulent flow. In this case it can be assumed that

the transformation process, for example the rate of evaporation in boiling

-17-
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at subcritical pressures, is not excited. The fluctuations at one point

do not have any effect on other fluctuation_ somewhere else in the system°

Since the integrated effects of these fluctuations vanish they de not pose

a problem.
l

In the case of an organized oscillation the transformation process

will be excited by one or more coordinating processes such as the oscillation

of the inlet flow rate, of the heat transfer coefficient, etCo The exciting

force for maintaining the oscillation of the coordinating process is in

turn provided by the transformation process° For example, in toiling sys_

tems oscillations of pressure will affect the saturation temperature which

may induce oscillations in the rates of evaporation. These in turn may

induce flow oscillations and provide the excitation force for maintaining

the pressure fluctuations.

The fundamental character of _rganized oscillations is that a well

defined correlation exists between fluctuations at two different points

or instants. In other words that a disturbance is propagated, ioe., dis-

placed in time and space through the system. When these organized oscil-

lations are present their integrated effect does not vanish whence the interest

in these oscillations. Furthermore, an oscillatory system may become unstable,

i.e., it may have the tendency to amplify. In the example cited above

pressure fluctuations of an increasing amplitude may be generated leading

to the destructi,_n of the system. When the effects are proportional to

the causes the system is defined as linear, in this paper we are interested

in such systems.

-18-
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[1.4 The M!c_h___jismof Low Frequeclcy (Chugging) Oscillation at

Supercritical Pressures

Tt was noted in the preceding section that the characteristic of

organized oscillations is the propagation of disturbances through one system.

lhese disturbances can be variations of density, pressure, enthalpy, entropy,

etc. In this section we shall examine the effects which these propagations

may have on the osciiLating propensity of the system, in particular, we

sha!] consider the propagation of density disturoances and the effect of the

_ime Jag, i.e , of the space lag. The efiects of pressure waves are discussed

in Sac_ion 1i-7 together with the othe" _echanisms w_ich may induce flow

oscillations in the near¢riLi_al and supercritical regions.

We note that the effect of the time lag in inducing combustion in-

stabilities was already analyzed by Summerfeld [52_, Crocco and Chang[48_/

among others. In boiling systems, this effect was already analyzed by

Profos [4_, _llis and Heasley[50_and by Bour_ [5_. In these analyses

the flow was assumed to be homogeneous, i.e., the effect ol the relative

velocity between the gas the liquid phase w_s neglected. A density propa-

gation equation, applicable to two-phase mixtures, which takes this effect

into account was formulated in [53_ and solved in [54, 55_ .

Let us examine now the effects of the finite rates of propagation and

of the resulting time lag and time delays on the flow in a system consisting

of a constant pressure tank connected by a feeding system to the heated duct.

Consider first the tank and the feeding system only anu let us perturb

suddenly the inlet flow. If there is no feedback between the heated unit

and the upstream part of the system, the steady state conditions wil_ be

restored. In particular, if the variation of the flow rate is small during

-19-
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tTo Lime a [;ressuru wave propagates back and iorth through the tank and

tile teed sy=ter,, then the pressure effects can be neglecteU. As discussed

±', _ $8_ the process can be described then, with sufficient a=curacy, by

sn exp0n_iti_ily decaying flow whi=b is characterized hy the relaxation
i

ti:-aeconstant i.e_, by the line relaxation time. lherefore, the system

is stabJe because the steady state conditions will be eventually restored.*

Consider now the effect of a pertarbed flow at the inlet of the heated

J'.,ct.Te__ Figore [I-4)o !_ is obvious _hat an oscillatory flow at :he inlet

will {_.d.lcc a.'_oscillatory flow of the fluid in the duct. However: i,_

absence nf a driving mechanism these osc _'_ "tions would also exhibit ar ex-

ponential decay. We are looking for a mecn_n,-sm whereby these flow oscil-

]a[ions at supercritical pressures can be maintained. Like in boiling and

in combu_stion such a mechanism is prDvided by the propagation phenomena

•._hich introduce different delay times in the response of the system. Thi

Is showT, in Figure lI-4.

it can be seen on Figure ll-4 that an oscillatory inlet flow can induce

oscillations of the space lag; this is in accordance with the discussion of

the preceding section. The onset of these oscillations is delayed however

by tne lag time "Cb, because of the finite rate of propagation of the dis-

turbance. An oscillatory space lag, which is equivalent to an oseJllatory

source, will induce flow oscillation, in the "light" fluid region. These

source-induced oscillations will be present in addition to those already

induced by the inlet ilow. Because of these two oscillatory motions th6re

will be a delay time _ in the flow response. Oscillatlons of the flow

• We =r_ assuming here that any servo-control mechanism in the feeding system

will not have a desta_llzing effect.
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will induce oscillations of enthalpy and o£ density both delayed by a

certain dela time. With flow and density oscillating, the pressure dr_p _-

in the duct will also oscillate. If the conditions are such that the mini-.

mum pressure drop in the duct occurs when the inlet flow is maximum, it is
i

apparent thrn that the oscillations can be maintained. It is also obvious

that whether or not thi_ will occur will de_end on the time lag _b and on

the delay times @_ , @_ , @_ When these delay timc_ do no__t

depend upon -_ b' zt can be seen that increasing the lag time _b has a

destabilizing effect, Since the t_e lag _b (see Figure 11-4_ depends

upon the enthalpy difference i2 il, it can be concluded that, for this

particu[er case, a decrease of inlet enthalpy iI, i.e., that _n increase

of _i21 has a destabilizing effect°

From this qualitative description _t can be already seen that at

supercritical pressures an unstable flow can be induced by the delayed

response of various perturbations. It remains now to advance a qt_alitative

descriplion. We shall do this in Ehe followiilg chapters by modifyi;ig and

the method proposed in _50, 51_ for boiling at subcriticalapplying

pressures.

11.5 Method of $oluLio_..qn

_,, 0!

In what follows we shall conside_ the ",e_vy and the "light" fluid

regions separately. E_h will he describe@ in terms of three conservation

equations and the equation of state. We shall use the one dimensional

representation and obtain solutions for each region. These solutions will

be matched at the transition point, i.e., at the end point of the spac_

lag to provide a solution valid for the entire system.
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Fellow_rig 48_ 50, 51 it wi]! be assumed that the variation of

pressures can t:e _cgJec_edo This is _ by the assuLnptlon that the

lenslty is functicn cf enthalpy onlvo It can be seen that this assumption

, wiJi le valid _ if the variations of flow, density, enthalp_, etc. are

relati,,ely sma!l during the total time for F_opagation oi a _ressure wave

tack and forth through the duct° Under _his condition it can be asstJmed

that rbe varlcus disturbances move through a uniior_, medium. It is ap-

_ar,_n_ a!s_ t_ac this will be true only zf the rate ci propagation of

fressure waves I_ considerably laster than the rate of propagation of the

dist_rbanceso However, both in boiling systems as well as in the nearc_itical

region the velcclty of sound reaches very low values. _ Consequently, it can

he e_pccted that there will be a range of operating conditions for which

abe assumFticn that the properties dc not depend upon pressure variations

w_il not be satisfied° For boiling systems this limitation has been already

recognized a_d discussed by Christensen and Solberg [56] o In general,

it can _'e expected that the assumption will be satisfied in the low frequency

range, ioe._ in "chugging" oscillations° When the effects ol pressure vari- t_

ations can be neglected then one can use the formulation put. forward in L-[50_ Ii,_

ri
and carried o'_t in t51_ ior boxling systems at subcritical pressures.

!
lhe method of solution used in this paper is as follows. A small pe_-

turbatxon is imparted to the inlet velocity. The velocity of the fluid is

determined then b: integrating the divergence of the velocity. With the

*Indeed, in the critic_! region some authors reported values approaching a

zero velocity. At present nelther the exact _alue of the velocity of sound ?

ar the c_itical poin_ is available no_ a satisfactory understanding of the
phenomenon has been attaieed.

-22- i

I

1967019449-048



veJOc_L_ _ -be energy equation is zntegrated to ottain the time lag _

as _c]] a_ the ra_e of preFagatlon of entbalpy disturbances° Frcm the

enthalpy and from the equation of state we then o_taln the density cf the

medium° The diffecentiation between the nearcritical region and t_e
J

suFercritical region is achieved by asslgnzng the appropriate expressicn

to the equation of state° With the velocity and the density known, the

momentum equation can be integrated° Since the i=,ict disturbance is s_l

the mo_eatu_ eqLation is first linearized and then integrated to give the

characteristic equation°

because of the linearization of the momentum equation the analysis

will be applicable only to cases where the effects of the instability are

not so strong to produce large amplitude oscillations° It can be used there-

fore to predict the conditions of incipient instability_ Joe., to determine

statility limits° As discussed in [48] andS50, 51_ linear effects and fermu o

lations have been successful in predicting certain type of instabilities

("chugging" instabilities) in combustion and in boiling systems respectively°

A similar result could be expected, therefore_ with the present formulation if

it is used to predict the onset of "chugging" instabilities at supercritical

pressures.

Iio6 The Characteristic Equation and Its Applications

The characteristic equation for this problem is an exponential poly-

nomial_ it is therefore of the same form as the characteristic equation for

combustion instabilities [48_ , thus
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wl_re [,] and L 2 ar_ po!yno_:ials wich coefficients independent of the time

and wh_re s is a _eot of the characteristic equation.

I_ general, the root s is a complex number; the real part gives the

aHFlificatlon coefficient of the particular oscillatory mode, whereas the
I

iT-_inary part represents the angular frequency. Since the original per-

rLr_a_ton is assumed to be of the form exp[ st ] 9 a given oscillatory mode

_i_I _e sta_le_ neutral or unstable depending upor whether the real part

_f s is !ess_ eq'za! or greater than zere_ A suflicient cond1[ion for the

su_ten_ t. be st_hl_ Is therefore that the eharacL_istic equatio_ (Eqo II=l)

h=s n, ro_ts in the right half of the complex s pl_neo

L=. us examine _ow what inlormation can be obtained from the character-

fslic equatien as well as the type of practical problems where this information

can be applied most usefully. Two such problems were discussed by _rocco and

Cheng [ 48_ in connection with the stability analysis of combustion systems.

lhe same discussion can be applied to the present problem.

in the first class el practical problems one is interested i_ deter-

n,ining whether a iv_!.y_e_ system with specified characteristics, i.e., with i

spec:ified numerical ccefficients is stable or unstable. This is most often .!

a situaticn that arises during the planning period, i.e., before the system i

is d_ _,.._ and tested. The characteristic equation can be used to provide

am a_s_er to this type of problem. In parti6ular, since the numerical co-

etf_cie,ts in the characteristic equation are known, Crocco and Cheng [48,_

that the use of Satche's [58_ diagram is most useful for analyzing theNOte

e×ponential polinomial obtaining thereby a _olutlon for this type of problem.

In the second class of practical problems one is interested in the

qaalicative trends of the stability behaviour of a system when various
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parameters are nangedo This is most often a situation that aris_ = d,tring

the design period oecause of the designer's need either to design _ system

with suffiuienn safety margins or to modify a given unstable system in order

......_ ic sLasie. For this kind of problem Crocco and Cheng 48

note that it is advantageous to use _he characteristic equation for de_er-
i

mining the stability boundary of a certaiD system. On such a boundary,

ex0ressed in terms of the operating characteristics of the system and of

the process, the oscillatory m6de in question is neither stable nor unstable,

i.e., the real _art of s vanzshes for that mode. Yhe seability boundary

divides therefore the space formed by the parameters of a given system into

different domains in which the system is slab!= on one side of the boundary

and unstable cn t_e other. !f by varying one parameter of the system the

staDiiity bou_ :y is shifted in such a way as to decrease the unstable

domain, the variation of the parameter has a stabilizing effect and vice

versa.

Followieg the standard procedure the stability boundary is obtained

from the ¢harac_erlstic equation by setting s = it4.), where co is the

frequency of the neutral oscillation° Upon separating the real and imaginary

parts of the characteristic equation one can eliminate the frequency _ ,

the resulting equation represents the stability boundary. Two such boundaries,

obtained from characteristic equations given by first and second order ex-

ponential pol_omials, are shown in subsequent chapters.

11°7 Additionai Mechanisms LesdinK to Unstable Operation

Before proceeding with the formulation of the present problem we shall

note and examine briefly additional mechanisms which can induce flow oscillations

in the nearcritical and supercritical regions. These mechanisms will be

analyzed in more detail in separate publications. Ii
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it is instructive to note first s general characteristic of oscillatory

systems. A necessary condition for maintaining oscillations is that enouBh

energy is supplied to the system at the proper frequency and phase relation

in _,rder to evercome the losses due to various damping effects which arei

_ways present in real systems° When the rate of energy supplied is control -_

led hv an external source and is independent of the fluctuations inside the

svstems_ the oscillations will build up when the energy is released at a

characteristic frequency giving rise to the resonance phenemenon° However_

whet the system centains itself an energy sourc_with a property that the

energy release depends upor a fluct,,_tion inside the system, then an accidental

small disturbance in the system may interact with the source resulting in

oscillations of increasing amplitude. For this to take place it is necessary

that the energy from the source be fed to the disturbance during part of

the cycle.

It was discussed in preceding sections that the system which is analyzed

in this paper has the property that the energy release depends upon fluctu-

ations inside the system. Oscillations of the time lag and of the space lag

are examples of such f_'_ctuations. We shall examine now other energy sources

and fluctuations which may be present in the system.

It was discussed by Rayleigh [591 that internally ,iriven pressure

osci!]ations can occur in a system consisting of a gas flowing through a

heated duct. For such oscillations to be maintained Rayleigh notes that

the energy must be added zo the gas during the moment of greatest conden-

sation and removed during the rarefaction period. This leads to the Rayle gh's
!

criterion which s_tes _hat a component of the fluctuating heat addition must i

lbe in phase with the pressure wave if oscillations are _o be thermally driven.

l
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The same criterion can be used to explain a type of osci]lation ob-

served at critical and supercritical pressures as well as in boiling

mixtures at subcritical pressures. In both systems the heat transfer co-

efficient is a strong function of pressure. Thus, pressure oscillaticns
i

may interact with the heat transfer coefficient inducing oscillations of

the latter. If these oscillations are in phase, the system may be thermally

driven and become oscillatory.

Another mechanism which may induce oscillations at both subcritical

and at supercritical pressures is caused by the large compressibility of

some _rts of the system. At high pressures this is the section of the

system where the properties of the fluid pass through the nearcritical

region. At pressures belcw the critical point, this will be the section

o_ the system where subcooled boiling takes place.

Still another mechanism that can induce oscillations at subcritical

pressures is caused by the change of flow regime which can induce large

iluctuation of the mixture density. These in turn may induce both os-

cillations of the flow and of the heat transfer coefficient thus providing

the driving force necessary for maintaining the oscillations, i

It can be expected that each of the mecL,anisms may be effectiv2 over !

some raage of operating conditions. It can be also e, pected that the

resulting oscillations are characterized by a certain frequency range and

by particular _'ave forms. Indeed, several frequency ranges and wave shapes

have been reported and described in the r_ferences discussed in Chapter I.

The mechanisms just described will be the subject of future investigations;

in _at follows we shall proceed with an analysis of the "chugging" oscillations,
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III. The "Heavy" Fluid Region

ITIol The Governing Equation

For a "two-region" approximaticn the "heavy 'vfluid region extends

from the entrance of the heated duct to the transition point° Note,

that for a system with constant energy input, the location of this peint

Jill move a]ong the duct when the inlet velocity and/or the iniet enthalpy

vary.

it will be assumed that the fluid in this region is i_icompressible

and that the thermodynamic properties are constant. The problem is formu_

lated by considering the three field equation= describing the conservation

of mass_ momentum and of energy in addi on to the constitutive equation

el state describing the properties of the fluid.

For a one dimensional formulation, used in this ana]ysis, the con-

tinuity, energy and momentum equations are given respectively by:

and

where the symbols are defined in the Nomenclature.
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Phe ccnstitutive equation of state is given by:

111-4

I

Equations III-i, 2_ 3 and 4 are four equations which specify the four

_# _A and i in the "heavy" fluid region. These four
variables _;

e_uations will be integrated to yield _! _l Q,A and i as function of
space

and n_ time° These will be then used to determine the time lag and the

_.ace lag.

11io2 T_he Eqaation of Continuity and the __f the Velocity

In view of the assumption of an incompressible "heavy" fluid the con-

tinuity equation reduces to the divergence of the velocity

_ O

nl-5

whence upon integration we obtain

The velocity in the "heavy" fluid region ic therefore independent of

pcsition, it is a function of time only.

In order to analyze the stability problem we shall assume that a small,

time dependent velocity variation _i , is 'superimposed on a steady inlet

velocity _A_ , thus:
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where the bar indicates steady state conditions°

_rl-3 lhe Energy Equation

With the fluid velocity given by Eq. 111-7, the energy equatio_n becomes°

I

This is a first order partial dlfferenti_l equation whose solution can be

oktained _y means o* characteristzcs _60, The general solution ¢f

Eq° III-8 ia of the form:

whe re

III-lO

are sclut_nsof any two independent differential equa_on_which imply !

I
the relationships:

For example, by taking alternately the first and the second equation, the

first and the third equation we obtain the following set
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a_d

_ _ _& III-13

/

in order to solve the problem it is necessary to specify the initial

and the boundary conditions. These will be speciiied by letting a particle

enter the duct with entha]py iI at time -_0 , (See Figure 11-3) thus,

t r,

With this boundary and initial condition, one obtains after integrating

Eqo 111-12 and 111-13 the following relations:

-_ = G,(i- -c,).. f. e [ l - , 111-i5

and

t

Upon e]_ _inacing the time _'_l , between these two"equations we obtain i
l

an expressi(,n for the enthalpy as function of space and time, thus: Il
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The first term on the right-hand side is the steady state term, whereas

the second one is the transient which accounts for the perturbation ot the

Ln!et velocity.

111.4 The Time Lag and The Space Lag

In Section Ii-2 the time lag _b' was defined as the time required for
m

increasing the enthalpy of the fluid from the inlet value iI up to the

enthalpy at the transition point i2 (See Figure II-3). Consider now a

fluid which enters the duct at time _i and attains the entPalpy i2 at

tlme _-2; it follows then from Eq. III-16 that the time lag is given by:

which, in view of Eq. 111-13 can be also expressed as"

aL_, ALZ, III-19

It can be seen that for a given system and at a given pressure the time

lag depends only upon the enthalpy difference (i2 - iI - _i_._ ) and the

heat flux density.

We _hall determine now the space lag. For a "two region" approximation.

Figure II-3 indicates that the'%eavy"fluid region extends up to :he transition

point where the bulk fluid enthalpy reaches the va.!ue of i2. Inserting i2 5,

in gq. 111-17 we obtain the following expression for the space lag:
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For ste:_dy state oTeration _.= O, whence we obtain from Eq. III-20
Ir_.dL

the steady state space lag _'-, thus:

1.1-21

In view of Eq. 111-18 and 111-2i, we can also express Eq. III-2C as:

111-22

or

Several commentc are appropriate.

Equations III-18 and 111-21 indicate that for s_:eady state, i.e., F
I)

when _ = 0 the time iag _b corresponds to the transit time.of a fluid

particle through the "heavy" fluid region.

2) Equation 111-22 shows that the response of the space lag _o a i

variation of the inlet velocity is delayed by a time period equal to the i

time lag _b" ]

3j If we interpret the enthalpy i2 as the enthalpy at saturation and

therefore the difference _ i21 by the subcooling then Eq_ III-22 predicts

the location of the boiling boundary, i.e., the location where boiling

starts in a two-phase mixture at subc_Ittcal pressures. Indeed, such an

expression was derived previously (ia [49_ 50, 51] among others_ using

0'

somewhat different approaches) for analyzipF oscillations in boiliT 8 mixtures.
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TLe _i_e lag _b was called there the "evaporation time constant '_[49]

111o5 ]'heMomentum Equation

The momentum equation can be integrated now since the velocity in

and the boundaries ol the "heavy" fluid region bare been determined° With

the boundary conditions taken as

the integrated momentum equation becomes

7, o

where we have taken into account the assumption that the density in the

"heavy"fluid region is constant. In view of Eq. III-5, III-6, III-7, and

Iii-23: the integrated momentum equation yields:

Linearizing Eq. III-26 and retaining only the terms with the first power

of _ we obtain: ,
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111=,27

We shall consider now the pressure drop across the inlet orifice.

De_l=i;_g m/ k _ -_u_erica] coefficient that takes into account the effecti

_'i tVe geometry of the restric+ion and of other losses like vena contracta_

eteo> _e can express the inlet pressure drop across the inlet orifice by:

which_ upon linearization can ba expressed as:

We define now the steady state values of the pressure drop due to

body forces (gravity) by:

_-i>_,+= <te<_^ III-30

due to friction by:

_ 1:7"_>.-_-
_" 2_ .,. I,t, _'"III-31
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and due to the inlet orifice by:

!

In view of these three relations and upon substituting Eqo III-29

in Eqo III-27_ we can express the pressure drop in the "heavy" fluid

region _y_

II1-33

whe re

st

111-34 ,$

and

r^ = e_ (_-e )
5 111-35

The first line on the right-hand side of Eq_, 111-33 represents

the sum of the steady state pressure drops, whereas the second one accounts

for the transient response. In particular, the first term is the inertia

of the "heavy" fluid region; the'second term are the pressure losses due to

variation of inlet velocity whereas the last term shows the effect of the
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varylng space lago Equation _II-35 indicates that this last effect is

_b o We shall proceed now with the analysis of thedclayed _y lagtlme

"llght" fluid region°
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IV The "Light" Fluid Re_ion

IV.I The Governing Equation

; j For a "two region" approximation the "light" fluid region extends

from the transition point to the exit of the heated duct. The problem

is formulated again in terms of three field conservation equations and

of a constitutive equation of state. However_ in contrast to the "heavy"

fluid the density in the "light" fluid region is function of enthalpy

and of pressure. It was discussed in Chapter II that for "chugging"

oscillations_ the effects of pressure variations can be neglected.

Consequently_ the density will be a function of enthalpy only.

The "light" fluid region is described_ therefore_ in terms of the

continuity equation

-I-_ = 0 iv-1

of the energy equation

the momentum equation

and the constitutive equation of state
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IV-4

¢r

when expressed in terms of the specific volume "0"

Equations !V-I, 2, 3 and 4 are four equations in terms of four

variable$_ _ ,_ and io They are applicable to the "light" fluid

region at supercritical pressures. They can be also applied to the

two phase flow region at subcritical pressures if, and.only if, the

relative velocity between the phases can be neglected. .r

it is emphasized here that the form of the energy and the form of

the momentum equation, as given by Eq. IV-2 and Eq. iV-3, are correct

if _he relative velocity between the phases is either zero or its

effect is negligibly small. If such is not the case, then both Eq. IV-2,

and Eq. IV-3 must be modified.

It was discussed in Section 11-5 that at high pressures, say above

0.85 of the reduced pressures, the effect of the relative velocity is

so small that it can be neglected. The region of interest to this analysis

is the high pressure region. It can be expected, therefore, that, in

this investigation, both Eq. IV-2 and Eq. IV-3 can be used to approximate,

with sufficient accuracy, the energy and the momentum equation for the

two phase mixture in the nearcrftical region.

In what follows we shall use, therefore, Eq. IV-I through 4 to des-

cribe both the "light" fluid at supercritlcal pressures and the two phase
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mixture in the nearcritical region° The differentiation b_tween the

"light" fluid and the two phase mixture will be realized by assigning

the appropriate expression to the constitutive equation of state. This

will be done in the section that follows.
I

IV.2 The Equation of State

For the "light" fluid the relation between the specific volume and

the enthalpy can be obtained either empirically, i.e., from experimental

data or it can be approximated by an equation of state such as the per-

fect gas or the van der Waals' equation etc. It was noted in Sectiou II.l

that for oxygen the perfect gas equation predicts with sufficient accuracy

the reiation between the specific volume and the enthalpy. Since this

fluid is of primary interest to this investigation, the perfect gas

equation will be used as the constitutive equation of state for the ':light"

fluid at supercritical pressures.

Assumin_ a constant pressure process we have for a perfect gas the

following relations

!

fly- _ Or _v-6 '

a_d flL = c_ _V
IV-7

whence

- IV-8
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For a "two-region" approxi10ation the boundary condition for the "light'

t±_id region is given by:

We obtain then the equation of state for the "light" fluid region by

integrating Eq. IV-8 subject to the boundary condition given by Eq. IV-8,

thus:

(i-i_l iv-10

We shall derive now the equation of state for the two phase mix-

ture in the nearcritical region. We recall first that the quality x,

of a two phase mixture is defined by:

 =_6L
G_G_ IV-ll

where Gg and Gf are the mass flow ram.s of the vapor phase and of the

liquid phase respect%vely. We recall also that the specific volume

and the enthalpy of a two-phase mixture are given by:

and

, , IV-13

L = Ct-x)_,_.-,-.xc,_ ..

- " "TL_ __:
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Wi_ere _" if and I)-_ i are the speclfic volumc and the enthalpy ofl g g

the liquid and of the vapor respectively.

We obtain then the equation of state for the two phase mixture by

eliminating the quality x, between Eq. IV-J2 and Eq. IV-13, thus:

• = %._ l_rf,and where _ ifg is the latent heat of va_ori-W_ere _ tg g

zatrC,lo Diflerentiating Eqo IV-,14we oPtaln for tiletwo phase mixture:

-- " IV- 15 _

which can be compared to Eq. IV- 8 applicable to the "light" fluid at

supercritical pressures.

It is important to note that both_ the equations of state for the

"light" fluid at supercritical pressures, i.eo, Eq. IV-IO, and the equation

of state for a two-phase mixture at subcritical pressures, i.e., Eq. IV_I4_

are of the same form, i.e., _oth can be expressed as:

We can use, therefore, Eq. IV-16 for the equation of state in the near-

critical as well as in the supercrltlcal region. We shall distingulsh

one region from the other by substituting either Eq. IV-15 or Eq. IV-8

in Eq. IV-16.
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I

IV.3 The Equation of Continuity and the Divergence of Velocity

Severa] methods are available [49, 50, 51, 62] fo_ _ete.mining the

velocity in a boiling mixture. Any of these could be modified and used

to determine the velocity in the "light" fluid region. In what follows

shall use the method of Bour_ [51 l
we

As in the "heavy" fluid region we shall determine the velocity by

integrating the divergence. However, in contrast to the "heavy" fluid

region where the divergence is given by Eq. III-5, the divergence in the

'_ligh_" fluid region _s not zero but is obtained from Eq. IV-l, thus:

In order tc integrate the divergence it is necessary io evaluate

the right-hand side of _,'_.IV-17. Following Bour_ this "a ".be done by

means of the energy equ_,_,on.

Since the density is _nction ofentha]py only o_ ,_;,write

Substituting Eq, IV-2 in Eq. IV-18, it follows that:

whence from Eq. IV-19 and IV-17 we can express _he diver8ence as:
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We shal] define now the reactiou frequency* C[ by:

"1' 4,. C_ di JW A< lV-:,i

It follows then from Eq. IV-8 and Eq. IV-21 that the reaction frequency

for the "light" fluid in the supercritical region is given b_,:

¢

..n. _ _, a_g iv-22 _ _
_c_ ,4_ t, "

whereas it follows from Eq. IV-15 and Eq. IV-21 that for boiling at sub-

critical pressures the reaction frequency it.given by:

With the reaction frequency defined %y Eq. IV-21, it follows then

from Eq. IV-20 that we can express the divergence as:

_ _v-24

*The reasons for using this definition are dlscusaed in Section IV-9
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1

lhe physica] significance cf this equation is simple: the divergence

r[ Lie velocity in the "light:' fluid region is equal to the volumetric

rate of formation of the "light" fluid per unit volume of space°

In order to integrate Eqo IV-24 it is necessary to specify the
/

_eundary conditions, these are given by considering the velocity in the

"Lcavv' fluid regions i.e._ Eq. III_7o The boundary condition for

Eq i_2_ is therefere_

_t

IV-25

_hence upon integration of Eq. IV-24_ we obtain for the velocity in the

"_ig_t": fluid region the following expression:

__ S_

%4(_,i) -- 54,i" ee -_-_fl [%--_(_'_] IV-26 ,

We note that Eqo IV-26 with _ given by Eq. IV_13 is the velocity

in the two phase boiling mixture, as such it was used already in(49_50,51and 62.)

It is instructive to examine further Eq. IV-26_ which= by means of

Eq IIT=23_ can be expressed as:

s_

+ee -a -- (i-e )5
IV-27

We obtain the §teady state velocity i_ the "light" fluid region by letting

= 0 in Eqo IV-27_ thus:

-45-
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IV_28

I

We can rewrite then Eq. IV-27 as:

where the time depende't perturbatio_ of the "light" il_id is given by:

It can be seen from Eq. IV-29 and IV-30 that the flow in the "light"

fluid region is affected hy both the inlet perturbation as well as the _

perturbation of the space lag. This last perturbation is delayed by the

time lag "_ (see Figure II-4). i

We shall define now several steady state relations which shall be

used in following chapters.

By letting z = _in Eq. IV-28 we obtai_l the steady state velocity

at the exit of the heated duct, thus:
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T'_,eleag'_l'_iseaverage velocity in the "light" fluid region is defined

IV-32
0

_;_-er,ce from Eq. IV-28 we obtain:

From Eqo IV-31 we have:

IV-34

Sub-_tituting this relation in Eq. 1V_33 we have the following expressions

lot the average velocity:
, !

h g Iv-35

rt_elog mean velocity in the "light" fluid region is defined by:

where we have taken into account Eq. IV-34.
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A fourth relatzon of interest to this investigation can be obtained

fro_ the conservation of momentum G and the definition of the log mean

density_ If we denote by _ 3' the density of the fluid at the exit fro_

the heated duct= then the log mean density in the "light" fluiL region is

given by:
/

_ ,_ _ IV-37

g

The mean velocity, based on the log mean density, is then obtained by

considering the mass flux density, Joe., the momentum G, thus:

e,e. C,.  v-38 ...

which, in view of the preceding relations can be expressed also as:

.LV @_

We can proceed now with the solution of the energy equation.

IV-4 The E_uation

We ca_ solve the _nergy equation now since the velocity and the equation

of state in the "light" fluid region are specified. _y substituting Eq. IV-26

I -48-
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_.d I_-I0 in Eqo iV-2 we can express the energy equation as:

t °

-- = * (i- 4  v-40

laki:.g the enthaipy i2 at the transition point for reference and in view

_f tLe definition of the reaction frequency .J_L , given by Eq. IV-21_

•Te :_a:_re_,rite Eq. 1V-36 as:

IV-41

The initial and boundary conditions for the energy equatiun are de-

termined by considering the conditions at the transition point (See Figure

I!-3)_ they are given therefore by:

IV-42

IV_43

Equation IV-41 is again a linear partial differential equatiom, it

can be solved therefore by the method used in solving the energy equation

for the "heavy" fluid (See Section IIIo3). Following this procedure, we

obtain in place of Eq. III-II the following set: I

-49" _
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d % _t(;--t4dt -= _-

IV-4/4

whence:"

Integrating first Eq. IV-46 and taking into account the initial, con-

ditions given by Eq. IV-$2 we obtain:

I / _ j---- IV-47

whence :

_(_-_) .Io,_ [e --I-C_ _ a ¢_ _v-4s
-50-
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v

In order te integrate Eq. IV-45 we note that it is of the form of:

whose solution is:

where _ =_ e =

The integral of Eqo IV-45 is therefore:

_ + _e =

which, in view of Eq° IV-48, can be expressed as:

1 I

e-a=_ _ _ £e_ ____±¢ I=

The value of the constant of inteBration is evaluated by means of Eq. IV-42

and 19'-43_ this:
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Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arrangement :

_ ;,.:L(_-71a ae i--n( ) =s- .I'l S

IV-54

which_ in view of Eq. 111-23 and Eq. IV--3_r_ can be expressed as

IV-55

e ,_ - e _ _k n e gu_

By substituting Eq, IV-48 in Eq. IV-55 we obtain the solution of the

energy equation for the specified initial and boundary conditions _ thus

from which we obtain the enthalpy for *.he "light" fluid region

-52-
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IV-_7

Expanding and retaining only the first power of _ we obt_in after some

rearrangement

-- St&

If we let the perturbation go to zero, i.e., _ = O, we obtain from

Eq. IV-58 the enthalpy for steady state operation, thus

L - _ L -- IV-59

IV-5 The Residence Time

It is of interest to evaluate now the steady state residence, i.e.,

the transit time of a particle in the heated duct. Denoting by i3 the

enthalpy at the exit and by _ 3 the time when a particle reaches this

enthalpy we obtain from Eq. IV-47 the residence ti_ in the "light"

fluid region, thus:

-53- I
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I

IV-6v

which, in view of Eq. iV-21_ can be expressed also as:

my

Denoting by Q =_t, the rate of energy transfer to the entire - --

• duct and by'M)" the mass flow rate, we can express the total energy

balance in steady state as:

Substituting th_s relat±on in Eq. IV-61 and in view of Eq. 111-18 we

obtain the following expression for the residence t_me in the heated

duct:

IV-6 The Density and the Density Perturbation

The density in the "light" fluid region is given by the equation of

-54-
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state, i.e.. by Eq. IV-16, which, in vicw of the definitlon of the re-

action frequency __, given by Eq. IV-21, can be expressed also as:

Since the enthalpy in the "light" fluid region is given by the

solution of the energy equation, i.e., by Eq. IV-56 we can express the

density as function of time or as function of time and s,,ace. Thus by

substitutin_ Eq. IV-6_ in Eq. IV-47 we obtain:

_ (_"C'/ -- e IV-65

whereas by substituting Eq. IV-64 in hq. IV-56 we obtain:

which, by meaus of Eq. IV-3J, III-20 and ili-18, can be expressed also

as

-$5-
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or, in view o_ Eq. iV-65, it can be transformed in

_ IV -68

Using again the binomial expansion and retaining only the first power

ef _ we can express Eq. IV-67 as:

Similarly_ we can expand Eq. IV-68 aLLd exp[ess it as:

where the steady state velocit:y 0_(_) is given by Eq. IV-28.

By letting _ - 0 in Eq. IV-66 we can obtain the local steady state

density in the "]ight" fluid region, thus:

IV-71

-56-
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v

We shali define now several steady state relations which will be

used in the io!lowing sections.

By letting _ = L in Eq. IV-71 we obtain the density at the exit
I

from the heated duct thus:

where we have taken into account Eq. IV-31.

We shall define now the average density in the "light" fluid region

by:

- z-x, ,
0

whence from Eqo IV-71 we obtain:

In view of the definition of the log mean velocity _4_ given by Eq. IV-36

this average density can be expressed as:



_- -- IV- 75

i

We have already defined the _pg mean density by:

_ IV-76

e_

where _ is given by Eq. IV-72o

A fourth expression can be obtained from the definition of the

/-

average velocity/kl.4_) given by Eq. IV 35 and the momentum u2 We

can express therefore a mean densit_ based on the average ve!ocity_
f

by: ,_

_ G _ 6- 26-

l
IV-77

With the steady state density in the "light" fluid vapor given by

Eq. IV-71_ we can express Eq. 7V-69 as

1967019449-084



where the density perturbation is given by

which, in view of Eq, IV-3J, can be expressed also as:

By letting _ = _ in Eq. IV-79 we obtain the density perturbation " .

at the exit from the heated duct_ thus _

It can be seen from the preceeding equations that in the "light '=

fluid region the density perturbation is affected by bot____hhthe perturbation

of the inlet velocity and by the variation of the space lag. Further-

more, the effect of the inlet velocity perturbation is delayed by a

delay time. Equations IV-30 and IV-80 are the quantitative expressions

for the flow and density variations in the "light" fluid region which

were qualitatively described in Section I_.

-59-
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With the density and the velocity in the "light" fluid region

given by the expressions derived in this section and _n Section iV-3

respectlvely_ we are in the position to integrate the momentum equation.

' IV.7 TheMomentum Equation

In order to integrate the momentum equation it is necessary to

specify the boundary conditions, these are given by:

?_ _ _ _ -- 2 IV-82

whence the integrated momentum equation becomes:

?3 L

--- r_ _ _v-83

The expressions for the density and the velocity which should be

substituted in this equation are given by Eq. IV-78 and Eq. IV-27,

i.e., Eq. IV-29 respectively. We shall consider now each term of Eq.

IV-83 separately.

IV.7.1 The Inertia Term

The inertia term in the momentum equation is given by:

L ,

* Zlt-_ iv-_
f
-_ -60-
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*VSubstitutiag Eqo iV-]8 and Eq. _ -27 in Eq. IV-84 and retaining only

the first power in _- we get"

_fl _,
IV-85

In view of the definition of the average deosity and cf the veloc ty

perturbation given by Eq. IV-75 and Fq, IV-3 , respectively, the inertia

term can be expressed as:

.... IV-86

IV.7.2 The Convective Acceleration Term

The convective acceleration term in Eq, IV.-83 is given by:

Substituting Eq. IV-78 and Eq. IV-27 in Eq. IV-87 and retaining only the

first power in _ we obtain upon integrati_ n:

t JL __'
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It is of interest to examine the physical significance of the various

terms.

If we let _ = 0 in Eq. IV-88_ we obtain the steady state acceleration

pressure drop _ _ which_ in view of the definitions given in Sections ,,

IV-3 and IV-6_ can be expressed as:

I

The second term in Eq. IV-88 can be expressed by means of the

Eq. IV-89 and of the space lag variation defined by Eq. III-22_ thus

-62-
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IV-9_

It shows_ therefore_ the influence of the variation of the space lag on

the acceleration pressure drop in the "light" fluid raglon.

_n view of Eq. IV-89 and Eq. IV-30_ the third term in Eq. IV-88

can be e_pressed as

It expresses_ therefore_ the influence of the velocity perturbation in

the "light" fluid region on the acceleration pressure drop. i

The last two terms in Eq. IV-88 stem from the density perturbation

term in Eq. IV-70_ i.e._ from

IV-92

-63-
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The third term in Eq. IV-88, i.e._ the f=rst term on the right hand side

of Eq. IV-92 can be expressed in terms of Eq. IV-89 thus

It shows_ therefore, the effect of the variation of the velocity in the

"light" fluid region on the density and, therefore, on the acceleration

pressure drop in that region.

The physical meaning of the last term on Eq. IV-88, i.e., Eq. IV-92

is not as clear as that of the other terms in Eq. IV-88. An insight can

be gained howeve _ by considering the upper and lower limits of the

integral

t

A( -It is shown in the Appendix C that this integral is bounded by:

•"li(1:s-c,) -Szb
_--C.a(t-_l¢ S_,< T < sl ,a(_-_e gu,-- -w --- IV-95

-64-
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which_ in view of Eq. IV-89, can be expressed as

-- -sq,

5-J'L Ml _-J_ L_, IV-96

We note that a simple expzession can be obtained by setting _I/_(_)= _,/_

#

in Eq. IV-94_ this approximatien results in the following expression for

the integral 14:

S-J_ Mo

IV-97

FE )

The physical meaning of the integral 14 is now clear: it expresses the

' effect of the perturbation of the inlet velocity on the density (see

Eq. IV-69) and_ therefore_ on the acceleration pressure drop in the

"light" fluid region. This effect is delayed by a delay time equal to

_or to ( _% - _I ) depending on whether we use this upper or lower

bound for the integral 14 .

B> substituting Eq. IV-89_ IV-90_ IV-91j IV-93 in Eq. IV-88 and by

expressing the integral 14 in terms of the approximation given by

Eq. IV-97 we obtain for the acceleration pressure drop on the "light"

fluid region the following expression:

-65-
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I

IV-98

...._,. tire steady state acceleration pressure drop _ is gtve,t by o

Eq. IV-89.

IV.7.a The Gravitational Term

The grav_tatlonal term in the momentum equation is given by

,L

,=

i
1

Substituting Eq. IV-78 and retaining only the first order terma of I

',,,uobta'_n after integral;ion:



L

-STb _L \ "_/'q IV-Iul

The physical meaning of the various terms is as follows:

We obtaLo the steady sta_e gravitational pressure drop by letting

= _ in Eq. IV-IO0_ thus in view of the definitions given by

Eq. IV-36 and IV-75 we have: ::j

IV-IO2

The second term in Eq. IV-I02 can be expressed by means of Eq.

IV-I_2 and Eq. III-22_ thus

_, i = i_(-y_) b_e_. _,_
IV-103

-67-
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It expresses, therefore, the effect of space lag variation on the

gravitational pressure drop. IL

The third term in Eq. IV-100 can be expressed by means of Eq. IV-39,

j IV-75 and IV-f03, thus

_ A%_ "- (_} Iv-lo4
_,,,,, 5- .n

where the mean velocity _ is defined by Eq. IV-39. This term then

represents the effect of velocity perturbation in the "light" fluid

region on the density and therefore on she gravitational pressure drop

in this _egion.

The physical meaning of the last term in Eq. IV-IO0 can be ex-

plained again by expressiug the integral 14 in Eq. IV-!OI by its upper

and lower bounds (see Appendix C)

which in view of Eq. IV-39, iV-75 and IV-103, can be expressed as

-68-
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!7,-106

A s_mple ewpresslon for the integral 14 can be obtained by using the same

apprczimatlor_ which was used in deriving Eq. IV_97. Thus_ if we let

_/_c_- _/_ _n_ ,_0_ obtainaf_e_i_e_-_on_ fo_low,:°_
t

.avprc_imaricn -- _ r, _ 0 _3 -.6 tC_,-'C,).... dn__ e Cla, _-=_

- 5 (-c_--c,) ZWlO7

-- By comparing Eq. IVo107 with Eq. !V=106 it can be seen that I4" has a value

which fall_ between the two bounds given by Eq. IV_106. The last term in

Eq. IV®100 expresses therefore, the effect of the inlet velocity perturbation

on eriedensity (see Eq. IV-79) and on the gravxtational pressure drop in

the "light" fluid region. Furthermore, this effect is delayed by a time

dei_y equal to _o_ r_ z_depending on whether we use the upper or lower bound

for the integral 14.

By substltutlng Eq. IV-I02_ IV-f03, IV-I04 in Eq. IV®IO0 and by

expres_iug the integral !4 in terms of the intermediate approximation

I,_ given by Eq. IV-f07 we obtain for the gravitational pressure drop

_n _he "light" fluid region the following expression_

-69-
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where the steady state gravitational presure drop is given by Eq.

IV-I02.

IV.7.4 The Frictional Pressure Drop

The frictional term in the momentum equation is given by

L i

_9

Substituting Eqo _V-78 and IV-27 in Eq. IV-109 and retaini,,:gonly the

first order terms in _ we obtain after integration the following ex-

pression /_{_-_)] ¢ _|%41 _ e < l-e )

_# -s%

Z ]) _ __ IV-IIO

-t-
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wbere the integral 15 is given by

L

_ _ e G_c_l_ =

' A[t_ rv-lll

[he physical meaning of the various terms is as follows°

We obtain the sr_ady state frictional pressure drop by letting

_. = 0 i_iEq. IV-flu, [hus in view of Eq. iV-35 we can write

IV-I12

lhe second term in Eq. IV-IIO can be expressed by means of Eq. IV-II2

and Eq. _II-22 thus:

[t expr¢ ;ses therefore the effect of the space lag variation on the

frictional pressure drop.

lhe third term in Eq. Iv-ll0 can be expressed in terms of Eq. IV-_O

-71-
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and Eq. IV-35 thus

lhls term expresses therefore the effect of velocity perturbetion in the

"light" fluid region on the frictional pressure drop.

Similarly the fourth term in Eq. IV-II0 can be expressed as

, )-/I _-]) _ £-.A. < _ _"; IV-l15

In view of Eqo IV-7_ this term shows the effect of the velocity

perturbation in the "light" fluid region on the density perturbation and

therefore on the frictional pressure drop im this region.

The physical meaning of the last term in Eq. IV-II0 can be explained _-

again by expressing the integral 15 in Eq. IV-Ill by its upper and lower

bound (see Appendix C) thus

-72-
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which in view of Eq. IV-II5 and IV-35 can be expressed as:

A simple expression for the integral 15 can be also obtained by using the

same approximation that was used in deriving Eq. IV-97 and Eq. IV-I07.

Thus, if we let _'/qI_) = _ /_ in Eq. IV-ill we obtain ,after integration

-- _ s Irs-_)
T e
-_ S-_ _L iV-ll8

!

The last term in Eq. IV-II0 expresses therefore the effect of the inlet

velocity perturbation on the density (see Eq. IV-79) and therefore on the !

frictional pressure drop in the "light" fluid region. Furthermore this i

1
effect is delayed by a delay time equal to _ or (_-_1) depending on

whether we use the upper or lower bound for the integral.

By substituting Eq. IV-112_ IV-113, IV-I14, IV-II5 in Eq. IV-II0 and

expressing the ir_egral 15 in terms of the approximation given by

Eq. IV-l18 we obtain for the frictional pressure drop in the "light"

fluid region the following expression:

-73-
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wbe e the steady state frictional pressure drop _ is given by

Eq. IV-II2o

IV.7.5 Th= Exit Pressure Drop

..

We can include the effect of the exit pressure drop in the momentum

equation. For this purpose we shall define by _ the coefficient for the

exit losses_ then the exit pressure drop cen be expressed as

By substituting Eq. IV-69 and Eq. IV-27_ both evaluated at _ = _, and

by retaining only the first power in _.. we obtain:

5-/_ IV-121

B-It.
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We obtain the steady state exit pressure drop by letting _ =

i:t Eq. ]V-12i thus

i

Consequently Eq. IV-121 can be expressed as

m

_3 IV-123

The second term in Eq. IV-123 represents tne effect of velocity

perturbation in the "light" fluid region on the exit pressure drop.

The last two terms in Eq. IV-122 can be expressed as

_-f_ _3 _' IV-124

-75-
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where we have taken into account Eq. IV 81. Consequently the last two

terms express the effect of the density perturbation on the exit pressure

drop.
i

IV.7.6 The Intesrate] Momentum Equation

By adding Eq. IV-86_ IV-98_ IV-I08_ IV-II9 and IV-123 we obtain the

integrated momentum equation for the light fluid region thus

-?6-
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By adding the momentum equaLions for the "heavy" and "l%ght" fluids

we shall obtain the momentum equation for the system whence the characteristic

equation for predicting the onset of unstable flow. This will be done

J

in the chapter that follows.

IV.8 Comparison With Previous Results

Before we proceed with the derivations of the characteristic

equation, it is of interest to compare the results derived in this chapter

with those reported previously in [49, 50, 51, 53, 55]. In this section

we shall make comparison with the results of [49, 50 and 51] whereas in

the section that follows we shall compare the present results to those

of C53, 55].

It was already discussed in qection 1.3 that the assumptions made

in the present analysis as well as the general formulation of the problem

are the same a_ those reported previously the Wallis and Heasley _50_ and

Bour@ [51.] for boiling, two phase system. It was also noted in Section

1.3 that the present analysis differs from those reported in C49, 50 and

51] in the following r_spect: i) the constitutive equation of state is

different and 2) the characteristic equation is different.

The analyses of (49, 50 and 51] were derived for boiling systems,

the present investigation is applicable to both subcritical and super-

critical pressures. It is emphasized, here again that neither this in-

vestigation nor those reported in [49, 50 and 51] take into account the

effect of relative velocity between the two phases in the boiling region

at subcritical pressure.* If the effects of the relative velocity are

*The conditions under which the effects of relative velozity can be •

neglected are discussed in more detail in {55].
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to be taken into account then the momentum and the energy equation, i.e.,

Eqo [V-2 and IV-3 mus_____tbe modified. Furthermore, a diffusion equation

should be added to the field equations describing the process. An in-

, vestigation along these lines will be reported separately.

if_ in the boiling region_ we express the reaction frequency _O. by

means of Eq. IV-23_ theft the density given by Eqo IV-6_ becomes identical

to that derived first in (49_ and to those in (50_ 51_ 55] using different

approaches. We shall examine now Eq. 1V-66 which can be expressed also

as

- -s(_-_,) -sq,
-- 4

IV-126

whence_ in view of Eq. IV-65_ and IV-30_ the perturbation can be written

as:

By adding and subtracting _ $ we can express this relation as

If we replace now ._ by Eq. IV-23, then Eq. IV-128 becomes identical
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• , ,'q _s_ t: ti,_ paper by Watli_ avd Heaisey (50_ d_rlved ust, g a q_fte-a_t

fi -f-D C"C ._,r' "h,

we can ,-_ert F.q. IV-65 in Fq IV-126 and e×_.ress the lar.tez as

i

e .5_,- -1- _ [v-129

:! -_-_ de-.¢_,¢ t._.rrr_ _-._icb. apTear or the Tight ha,,d s:de of q. 1'.'.129

_" .... ',7_.c×Im_ted by :_ cteady _t.ate _!at_o,', _.e oy

IV-130

,5 was done in (5l) we obtain

:-- "I"- IV-131

_':':h _s equivalent to Eq. 5. Appendix A of Boure':_ report (51).

Apart from the difference in the equations of _rate used in this

_raly._s. t._edzfference between the present _'esults _,nd those of (50. 51)

x_ tn the handliog th. _ momentum equation. In (50) the mo_t_ equation '

was n_ottzntegrated along the duct, it was first integrated by gour_ (51).

i_decd, _t can be shown_ _hat after sc_e rearrangement, Eq. IV-88, IV-iO0 and

"V-[IO can be put in the form of those g_ven in (51). In (51) the integration

of ti_e momentum equatl.on lead to a characteristic equation in the form of an

exponentxal polynomial of the fourth (or higher) order.

+
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In the present analysis we have introduced various definitions for

the mean, for the average and for the log mean density as well as foz th_ "'_i

, _.e_ in the "light" fluid region which enabled us to give physical

interpretation to the var_ouJ terms in _he integrated momentum equation.

It will be seen in what follows LhaL these relation_ together w_th the

approximation used in deriving Eq. IV-97, IV-Io7 and IV-l18)result in a

charactecisti¢ equation given by an exponential polynomial of the third

order. It will be seen also in whac follows that these results will

enable us to derive stability criteria and stabili_y maps which_

previously_ were net available in the literature.

IV.9 The Density Propagation Equation

It is of interes _ to note an alternate way for determining the density

perturbation.

If we substitute Eq. IV-21 in Eq. IV-lq we obtain:

u - -- P J]--+ IV-132\

This equation was called the energy eqaation in (51) where it was firs,

derived. Several remarks are lelevan= her_.

We note first tl.at Eq. IV-132 rredicts the propagation of the

density caused by the source term _, . A "void propagation equation"

was formulated in (53 and 55) in ternzs of kinematic waves which predicts

the propagation of density perturbations through a two-phase system.

_80-
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This void propagation equation takes into account the effect of the

relative velocity between the two ohase as well as the effect of the

non-u_Liform velocity and concentration profiles in the two phase mixture.
I

It can be easily shown that if these effects are neglected the void

propagation equation can be reduced to Eq. IV-132.

We note also that Eq. IV.-132 is of the same form as the continuity

for a given species in a multicomponent, chemical reaction system. In

chemical kinetics the source term i_ Eq. IV-132 is referred to as the

reaction frequency. It is for this reason that in C53_ 55] the term

was called the "characteristlc frequency."

Finally_ we note that Eq. IV-132 is a first order partial differential

equation which can be solved by the standard method used in Sections 111-3

and IV-4. Indeed following this procedure s used already in [53 and 55_

one can derive Eq. IV-66 and Eq. IV-68.

"81--
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V. The Characteristic Equation

V i. The Momentum Equation for ahe System

The momentum for the "heavy" fluid is given by Eq. III-33, whereas

, that for the "light" fluid is given by Eq° IV-125. By adding these two

equations_ we obtain the momentum equation for the system.

We note that if the downstream pressure P,. _s constant we can ex-

press the overall pressure drop_ i.e._ the external pressure dzop of the

system as a steady state term and a pressure perturbation caused by the

inlet flow. lhds

_l V-1

where the second term on the right hand side is determined by the pump

characterist_cs _nd has a negative value.

By adding Eq. III-33_ Eq. IV-125 and Eq. V-i we obtain tile integrated _

momentum equation for the heated duct_ thus

V-2

' *
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_. z_e_ _'_ = o
/--Z

We obtain the steady state pressure drop for the system by letting

the perturbations go to zero_ thus

V-3

i

By suutracting Eq. V-3 from Eq. V-2 we obtain the perturbe_ form of i

the momentum equation_ thu_

i

-83- .,.



Ihe formulaticn is now essentially complete because Eq. V-A is the

expression which gives the response of the system to the initial flow

pertubation as function of the influence coefficients defined below.

7he influence coefficien_F 1 and F2 represent the mass of the "heavy"

fluid and of the "light" fluid respectively_ thus

and

V-6
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The coefficient F 3 describes the effect of the inlet fzow variation

on the pressure drops in the "heavy" fluid region_ thus

4- _ __ __ _ __ V-7

This coefficient_ which is well known from studies of the transient

response of single phase flow systems_ has always a positive value.

The coefficient F4 shows the effect of the velocity perturbation in

the "izght" fluid region on the pressure drops in that region, thus

It is of considerable importance to note that each pressure drop is

differentiated and is weighed therefore by a different velocity. This

important result is a consequence of the integration of the momentum I

equation, i.e._ of the distributed paremeter analysis. We note that in i

the "lumped" parameter analysis the three pressure drops in Eq. V-8 would

have been divided by the same velocity, say by the velocity _ at the

exit from the test section as is most often the case for analyses reported

in the literature.

The influence coefficien_F 5 and F6 are given by

-85-
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It can be seen from Eq. IV-69 and Eq. V-2 that these two coeffi¢ienVs ac_.u t

fer rh_.effect of the da:rsity Ferturbation on the various Fressure d_or_ in

_.be"lig_T ''ii_:i r;gic:'. Note_ thac the density pertu__bation depends on both

_(_) and H I . D_o observations are noteworthy. First, the coefficient F5

shows *-hat the effects of the velocity perturbation on the "light" fluid

region are weighed b--various velocities. This, again, is a consequence of

the distributed para_necez approach. I_o_ the exponential which multiplies

the cc.efficie._-tF6 indicates that the effects of the inlet perturbation are

delayed by the delay time _$-_I •

Finally the coefficient F7_ defined by

V-ll

shows the effect of the space lag perturbation or the acceleration pressure

dro_ i: the "light" fluid region. I_ i_ important to notice here that _n

Eq. III_33 and Eq. IV-125 all other terms which are differentiated with

_esFeet to the length cancel each ot? .r in the momentum equation for

-86-
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the system This result could not have been anticipated ip a "lumped"

parameter analysis. Indeed_ in severa] studies of boiling systems using the

"lumped" parameter approach these terms were introduced and retained in

I

the analysis. In view of the loregoingjthe results and conclusions based

on such formulations can be considered as spurious.

By introducing Eqo V-5 through V-II in Eq. V-4 the perturbe# momentum

equation for the heated duct can be expressed by

Before deriving the characteristic equation it will be instructive

to express the perturbations in Eq. V-12 in terms of the perturbations of

the inlet flow and of the r_pace lag. Taking into account Eq. IV-30 we can

express Eq. V-12 as

It ran be clearly seen from Eq. V-13 that the dynamic response of the

heated channel £epends upon both the inlet flow perturbation and the

-87-
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variation of the space lag+ This latter effect is an example of a

fluctuation which occurs inside the system+ Tt was discussed in Sections

[I-4 and 11-7 that such fluctuation have a destabilizing effect, The
I

destabilizing effect which the space lag variation has _n combust on

systems and in boiling systems has been already demonstrated in [48, 52)

and [50_ 51] among others. Equation V-4 shows that, at supercritical

pressures, the space lag variation has a similarly descabilizing effect.

Furthermore, the negative sign in U r+ird teem on the left hand side of

Eq V-13 shows the destabilizing effEcn of the inlet velocity perturbation.

We have noted already that this effect stems from tiledensity perturbation

in the +'light" fluid region.

Vo2 The Characteristic Equation

In view of the definitions of the inlet velocity perturbation and of

the space lag perturbation given by Eq. III-7 and Eq. IV-30 respectively_

we can express Eq. V-I] as

_sfz._-zo)

_+,,f', [ r,+r,] + F_-r_, + F_ Fb e _ +
I $.j% _-.0_ ,_

V-14

-_E_ -$Z

From this relation we obtain the characteristic equation by noting that

since _ _0 the sum of the terms within the bracket must be equal to

zero. Thus, after multiplying by ($'-Q-) and after some rparrangement we
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obtain the characteristic equation for the heated duct:

_ slr._-r,)

V-15

It can be seen that the characreristic equation is a third order polynomial

with two time delays. From the definitions of the influence coefficients

we have the fo!lo_ing relations for the various terms which appear in

Eq. V-15.

- _, t _, _'_i-' _,_ + _- V-l, ..

--- t- -i- -- v-18

=- _- --- "+" _ I- + _ V-19 i

Fv-t¢_ _ z,e. z,,,,., ;_,.¢,, ,_
I

t- - ¢ 4-

V-21

/
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It was discussed in Section II-6 that the characteristic equation

predicts the value of S as function of the pressure terms given by Eq.

!7-16 through V-22. In general s is a complex number $ = _L_ _ the real
J

part gives the amplification coefficient of the particular oscillation

mode_ _.Thereas the iraaginary part represents the angular 2requency t_

Since the original perturbation of the inlet velocity was assumed to be

of the form $_= _g , a given oscillating mode will be stable_ metastable

or unstable depending on whetber the real part of S is less, equal or larger

than zero_ i.e., whether o_<#_ _=O or O.> O.

A general study of the flow behaviour entails an investigation of

conditions leading to aperiodic as well as to per_odi_ phenomena. The

first pertains to the possibility of flow excursion whereas _'_e second

pertains to the onset of flow oscillations. Following the stapdard pro-

cedure we shall study aperiodic phenomena by considering the case of

S = a with_= 0. Again, following the standard procedure we shall study

periodic phenomena by setting S=_o (a = 01(_ _0 } in .h_
characteristic

equation. Such an approach will enable us to determine the stability

boundary which defines regions of stable and of osni!lating behaviour in

a stabili;y map. In the study of the oscillatory phenomena we shall con- !

i
sider sfparately the case of high subcooling and the case of low subcooling. |

!

The stability problem at intermediate su_coolings will be considered in a

separate report.

J
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VI. Excursive Instability

VI.I Derivation of the Stability Criterion

The study of excursive, i.e., of aperiodic instabilities is con-

duct_d by considering the exponent _ of the velocity perturbation to be

' real, i.e._ by letting the angular frequency _ of the disturbance be zero.

It follows then from Eq. V-15 that for small values of _ , we have the

following relation:

V1 -i

-(_-il F,.(._._:,)+(,.,._)F.(j-,:,)__:._, .°

whence after rearrangement:

which is of the form

Vl-3
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It'

Eq,Jatlo- VI-Z predicts the value of the exponent S in terms of the

infldetlce coefficiem.s. Since the inlet ve!ocity perturbatioL is of the

form of $_ =_g _ and since the coefficient A* ie positive and exponent

S is real, Equation VI-3 indicates that the flow will be stable_ i.e.,
I

the disturbance will dec_'ease with time if B* is pos_tlve_ thus from

Equation V[-2 I%-

Vl-4

if B is negative then Equation VI-3 indicates that s w_ll be real __

and positive, consequently any flow disturbance will be amplified

with time resulting in flow excursions. Substituting the definitions

for the influence coeff_c'ents given by Equation V-5 ,_hrough Equation

V-II we can express Equation VI-_ in terms of steady _tate pressure

drops, thus

-"
VI-5

Tills inequality can be cast in I compact form by means of the

identities listed below:

j-
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da¢o, 2 ,_f'o,
C/h, G,

V1-6

d., G7
VI-7

These relations can be easily derived from the definitions of the steady

state pressure drops. _'"
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Substituting Eq. VI-6 through VI-12 in Eq. VI-5 we obtain the stability

criterion:

J

which can be expressed also in terms of the total mass flow rate W, thus

"e Id/'f4- _ 0 VI-14

For boiling systems_ this simple criterion was first derived by

Ledinegg [24_ using a different approach_ it was analyzed further in

[25 through 47] and _51]. The results of this analysis show that this

"Ledinegg instability" can occur also at supercritical pressures. The ,

significance of the stability criterion given by Eq. VI-14_ can be best

analyzed by considering the steady state _-_- =eiation for the heated

duct. This will be done in the section that follows.

VI.2 Sisnificance ef the Stability Criterion

If, for simplicity, we neglect the effect of the gravitational force

and if we express the steady state pressure drops in the heated duct in
J

terms of the total mass flow W_ and of the total heat input _ _ we have

the following relations:
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Vl-17

The total pressure drop for the heated duct is obtained by adding

Eq. VI-15 through VI-19_ thus

where the coefficients a_ b and c are given by

I

-95-

] 9670] 9449-]22



It should be noted that Eq. VI-20 is applicable to subcritical as

well as to supercritical pressures. By asslgning the proper expression

to (_/_), which we obtain from the equation of state, we can

differentiate the process of boiling at subcritical pressures from the
i

process of heat transfer at supercritical pressures. Thus, for boiling

at subcritical pressures we have from Eq. IV-15

VI-24 i

whereas at supercritical pressure_ we obtain from Eq. IV-8

#(_7-)= _ v125

When Eq. VI-24 is substituted in Eq. VI-21, VI-22 and VI-23, then Eq. VI-20

becomes the pressure drop relation first derived and discussed by

Schnackenberg (25) and Ledinegg (24) for boiling systems. For super-

critical pressures Eq. VI-20 was derived by the writer(6_) (see also

Appendix B).

j'
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It can be seen from Eq. VI-20 that whether in boiling at subcritical

pressures or in heating at supercritical pressures the steady state

pressure drop in the heated duct has the same cubic dependence upon the

total mass flow rate. This important conclusion from analysis is indeed

supported by thc cxperimenta] data reported by Krasiakova aLtdGlusker _18)

for water in forced flow through a circular heated duct. Figure VI-I_

which is reproduced from _18)/shows that in boiling at subcritical

pressures (P = 140 bars) as well as in heating at supercritical pressures

(P = 226 bars) the pressure drop in the heated duct has the same cubic

dependence upon the mass flow rate. It could be anticipated therefore that

the system will have similar dynamic characteristics at these two pressure

levels. This is indeed the case as it will be shown later.

The significance of the stability criterion given by Eq. V!-I4 can be

best analyzed by plottipg Eq. VI-20 together with the pump characteristic

on the same graph. Figure VI-2 shows such a plot together with three

possible flow delivery characteristics_ i.e._ i) constant pressure drop

delivery system_ 2) constant flow rate delivery system and 3) delivery

system specified by the pump characteristics. The intersection of the

pressure drop for the heated duct with the pressure drop curve of the

delivery system determines the operating point of the system. The

stability criterion given by Eq. VI-14 indicates that for some of these

operating points the system may be unstable with respect to some small

flow perturbations. In order to show this we shall consider each flow

delivery system separately.
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VL_2.1 Constant Pressure Drop Supply System

The operating point for a constant pressure drop delivery system are

indicated by points i_ 2 and 3 in Figure VI-2. The stability criterion

I

given by Eq. Vl-14 indicates that operation at points i and 3 will be

stable whereas that aL p_i_it 2 will be unstable. For example, if a points

I and 3 the flow is slightly increased the pressure drop of the heated

duct increases, i.e._ the "demand" curve of the system increases above the

"supply" curve of the delivery, consequently the flow will return to its

original value. Similarly_ if at points i and 3 the flow is decreased

the pressure drop of the delivery will be above that required by the

heated duct resulting in an increased flow and return to the original

operating point. However_ the operation at point 2 will be unstable with

respect to either a flow increase or a flow decrease. If the flow is i

sligl_tly increased at point 2 the external system supplies more pressure

drop than that required to maintain the flow. Consequently the flow rate

will increase until the new operating point is reached. Similarly_ if the _!

flow is decreased at point 2 more pressure drop is required to maintain

the flow than is being supplied by the delivery system. Consequently

the flow will decrease until the new operating point 3 is reached.

The preceeding considerations can be expressed in a mathematical form

by noting that for a constant pressure drop delivery system Eq. VI-20

reduces to

d vi-26

j"

-98-

1967019449-127



which in view of Eq. VI-20 becomes

-- 7- Vi-27

b

It can be seen from Eq. VI-26 that flow stability requires an in-

creBsing pressure drop with flow rate. This is indeed the characteristic

of most flow systems. However, the negative term in Eq..'1-27 indicates

that for boiling systems as well as for systems at supercritical nressures

the pressure drop may decrease with flow rate resulting in flow excursion.

Instead of the stability criterion given by Eq. VI-26 one can introduce

the coefficient of stability S_ appacently first proposed by Schnackenberg [25]

and defined by

-- _ _ _4" Q Vi-28

which in view of Eq. VI-20 and VI-27 can be expressed as

where the coefficients a, b and c are given by Eq. Vl-21, Vi-22 and VI-23.

_s observed by Schneckenberg (25J the stability coefficient S, defined

by Eq. VI-28 represents the per cent change in the pressure drop by a 1%
I

i
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-_=r!,_t!_. i: '_....la',s flow fete. it can be seen from Eq. VI-28 and VI-26 that

for -;tabi,_ fto,; S m:J._',b:_ positive, thus

S > 0 Vl-30

'7i.2.2 Constant _iow Delivery System

lhe operatxng pcir_t £o: a constant flow delivery system is given by the

:_:tersection ;;f the p,.cssure suppi_ with pressure demand curves. It can be

_een from Figere '..-2 That for such a system

d , vx-31

whence Eq. Vl-la ind_:a_.e.- that for such a system no fire excursiona_ are possible.

VI.2.3 Delivery S_e, ;led by Pump Characteristics

the operati[_ _c , for a system whose flow d_l_, :y is specified by

_he characterlsLics o[ -!_e pu_np are shown as poi-ts ': _ and 6 on Figure VI-2.

Using exactly the same a_ _,r,ents as those used _n ; ,,ssing a conscant pressure _ ,_

drop d_livery system, it can b--,_hown tbmt _h_ ,'_,.uing points 4 and 6 are

stable whereas operating point 5 is unstable _ith cespect to small flow i

dlsturbances. At this latter point any flow perturbation will cause a flow

excursion to either poln _. 4 or to point 6.
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|

_'_ _ The Effects of Various Parameters and the Methods for Improving Flow Stability

The effects which variouq parameters have on the propensity for flow

excursions can be evaluated by examing Eq. VI-ID, VI-2!, V]-22, VI-23 and _.

E_. vi-27. It can be seen that the variation of any parameter which tends

to increase the value of the coefficient b given by Eq. VI-22 will have a

#

destabilizing effect. Consequently, incrc: _ the value of the exit pressure

drop coefficient _e is destabilizing wne_ca_ the flow can be stabillzed

by a high inlet pressure drop, i.e., by appropriate orificin B. In view

of Eq. VI-24 and VI-25 it can be also seen that increasing the system

pressure will have stabilizing eilect whereas a decrease it, system pressure

h_s the opposite effect. Furthermore_ the flow can be also stabilized by

_hangiag the pump characteristics.

Before closing the discussion of excursive instabilities it wLll be

instructive to illustrate the destabilizing effect of the compressibility

of the fluid in the heated duct. It was discussed in Section 1.3 that the

instability mechanism which is analyzed in this paper is based on the

effects of time lag and of density variations in _he heateJ duct.

For simplicity we shall consider only the effect of the frictional

pre=sure drop in a system with zero inlet subcooling_ i.e._ with _i=_ .

For such a system Eq. 111-20 shows that the spac_ laB is also zero. The

frictional p_cssure drop is given by



ff we iusert in Eqo VI-3i the expression for the average velocity <U_> given

by Eq, IV-35 and since the space lag is zero. we can express the mean

specific v_lume qJ_ as

"g _ VI-34

or in view of Eq. IV-21 as

ziT, p_

whence

I

Since Eq. VI-32 and Eq. Vi-35 show that both _ and _f_, are

functions of W we can express the stability coefficient defined by

Eq. VI-28 as

I

_ (_-)f =2t

whence from Eq. VI-36 we have

!

i
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wL _, (d_/dl)--j is given by Eq. IV-15 or Eq. IV-8 depending on whether

we are _nterested in the subcritical or in the supercritical region.

It can be _een from Eq. VI-37 and Eqo VI-30 that for a system where

the mean specific volume does not depend on the mass flow rate the flow

will be stable. For such incompressible flow system the ccefficient of

stability S has a value equal to 2. This is also the maximum value of S

because when the fricition factor f in Eq. VI-32 is a function of the

Reynolds number then Eq. _I-28 shows that S will have a value less than

two, For example_ for laminar flow it will have a value equal to unity.

For a boiling system at subcritical pressures or for a process of

heating at supercritical pressures Eq. VI-38 shows tnat the value of S

can become negative because of the compressibility of the fluid, For

such systems Eq..VI-30 shows that the flow may become _nstable,

in closing it should be emphasized that the density effect per se_ ,

can lead to excursive flow instabilities. Oscillatory flow instabilities

results from a combined effect of time lag and of density variation. This

will be analyzed in the two chapters that follow.
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VII. Oscillatory Instability at Low _ubceoling

VII.I The Characteristic Equation and the Stability Map

In this chapter_ and in the following one we shall investigate periodic_

i.e._ oscillatory flow phenomena. For this purpose we shall assume that the

0

exponent 6 of the inlet velocity perturbation is given by _ =£_where the i

angular frequency &_ _ is _ root of the characteristic equation_ i.e._ of Eq. V-15.

In this chapter we shall consider the case of low subcooling_ whereas_ in the one

that follows we shall consider the case cf high subcooling.

For the case of low subcooling the characteristic equation_ i.e._ Eq. V-15_

can be simplified by recalling that for low subcoo!ing the time lag _b_ given by

Eqo 111-19 will be short. Note_ that the total transit time _-_J _ which also

appears in Eq. V-15 need not be short. This can be seen by considering Eq. IV-63_

i.e._

which can be also expressed as:

VII-2

= Z - )

or as

E I/l1-3
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Consequently_ for short a sp_ce lag A _ and a short time lag _b, the transit

tLme mav be long for suf£iciently long ducts and/or for low inlet velocities.

It can be seen from Eq. VII-3 that the effect of time lag will be small if

which ior subcritical pressures implies

whereas_ at supercritical pressure this inequality implies:

When the time lag _ is short, then in Eq. V-15 the exponential term 1

which contains "C&, can be expanded and the characteristic equation reduces i

to i

VII -7
-S (_:_- "C,)

This equation can be cast in a dimensionless form by defining a dimensionless

exponent

% = _ (t_-=,) : sa= VII -8
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using this new variable_ Eq. VII-7 can be expressed as

where the dimensionless coefficients a_ b and c are given by:

and where the total transit time 4-[ is given by Eq. VII-7. The coefficients

a, b and c can be expressed also in tern_ of the pressure drops_ thus

-- + _ __ +

_=. ._o.-_+ I,_+++,._+.,_P,,l"o+P,,,l,+P,., _,,
- ___---+ + + -

_ {--"t _t(l- --_i._ " '_, I"_, ' <l,,t._'_ h,,,,., I,,,-'_ VII-14

' I- °++'IC =- ...n.,,z'" +P,, +_ -,'- __ + __
VII-15 ,..

2'

¢

-lo6-
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Equation VII-9 is a second order exponential polynomial with one time

delay. Stability maps for such polynomials have been recently presented by

Bhatt and Hsu [6_ 64]. One such map is shown in Figure VII-I_ it is in

the c-b plane with the coefficient "a" as a parameter. The lines for which

the coefficient "a" is constant are stability boundary curves. For example_

for given values of the coefficients "b'!and "a"_ the stable region of variation

for the coefficient "c" is shown by the line segment AB. The segment CD is another

stable range for constant values of "b" and of "a".

Figure VII-I is the stability map which can be used to differentiate

the regions of stable operation from the region of unstable s i.e. s of oscillatory

flow in the heated duct. However_ because of the complicated nature of the

coefficients "a" s "b" 3 and "c" which appear on this maps it is rather difficult

to discuss al,d analyze the effects of the various parameters. It is desirable s

therefore_ to simplify the characteristic equation in order to obtain simple

stability criteria. This will be done in the section that follows by neglecting

the inertia terms in Eq. VII-7.

VII.2 Stability Criterion for the Case of Small Inertia

VII.2 The Characteristic _uation

If we neglect the inertia terms FI and F2 in Eq. Vll-7s the

characteristic equation reduces to its simplest form given by

-_

+ _ + _ e =0 vzz-16

where the coefficients A and B are given by

1F_. F,I- _r, ( F_ r._)
j"
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and F_

- _'_ Vll-18

It is important to note that a characteristic equation of the form of

a first order exponential polynomial with one time delay describes the onset

of "chugging" combustion instabilities as shown by Crocco and Cheng [48].

Since Eq. VII-16 is of such a form_ we can use _be results of Crocco and Cheng [48J

to analyze the flow stability in this problem. The difference between the present

problem and that of combustion is the physical meaning of the coefficients A and B.

In this problem they depend on various pressure drops in the system which were

obtained from the momentum equation. In the combustion problem the _oefficients

are obtained from the continuity equation and depend 3 among others_ on the process

of combustion.

We note also that the results of Stenning [62_ can be expressed in terms

!
of a characteristic equation of the form of a first order _xponential polynomial

with one time delay. However 3 since Stenning [62] did not formulate his analysis

of boiling instabilities in terms of the momentum equation_ the coefficients in

his characteristic equations do not depend upon the pressure drops.

VIIo2.2 Unconditional Flow Stability

It was shown by Crocco and Cheng [48] that no matter what the value of

the time delay _ may be the flow will be unconditionally stable if the co-

efficients A and B in Eq. _XI-16 satisfy the following inequality

A___>l vii-l
'B

* The problem was formulated in terms of the continuity and of the energy equation. #'"
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Because of its importance_ we shall define this ratio as the Stability Number N .s

In view of Eqo VII-17 and VII-18_ it can be expressed as

This stability criterion can be put also in the form of

whence upon inserting the values for the influence coefficients in Eq. VII-27

we obtain the inequality which must be satisfied for unconditional flow stability.

thus

'Z_?.,+ Z_,. -,-
u-_'T'- j, ,--o_,

VII -22

z

- it% -=_) +

This criterion clearly indicates the destabilizing effect of the pressure drops

in the "light" fluid region and the stabilizing effect of the pressure drops

in the "heavy" fluid region.

For once-through systems, when the acceleration and the gravitatlonal

terms can be neglected, Eq. VIl-22 reduces to

: ,-q-]>oi " -109-
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If we now appro×imate <N_ _ _ w= oan express Eq. VII-23 as

VI I -24

Defining by 7_ the sum of the pressure drops _n the "heavy" fl,Jid region.

VII-25

and by _ the sum of the frictionsl and of the e_it pressure drop_ in the

"light" fluid region

we can express Eq. VII-24 as
i

4

-i

whence I

_ _,_{_-_I __ -f1_, _'_ _ I VII-28

Inserting now the expressions for the charac_erlstic reac;ion frequency'_L

for the tinm lag _ _ given by Eq. IV_23 and III-19_ respectlvely_ we obtain

-ii0-

|
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This inequality caL_ be expressed also in terms of tbe total mass flow rate aud

o_ the total heat _iow _ . Thus

f d_r_

fi__q  *tT/ I- -a_ \a_J t,. ,:).(i- --- . a o(I- _"i") ">!v:_-_o

Again_ we differentiate the process of boiling at subcriti(al pressure frnm the

process of heating at supercritical pzessures by using th: appropriate equation

of state_ thus at subcritical ;,_essure we use Eq. IV-15_ i.e._

whereas at -upercritical pressures we use Eq. IV-8_ i.e.,

__ VII -32

P ?¢_,

The implication cf Eq. VII-30 will be discussed in Section VIT.3.

Vii.2.3 Cond_tlor!a] Stability

Fo lowing again Crocco and Cheng [48qwe can determine the relation

between the critical transit time _T_ and the critical frequencies'_ correspondin_

to neutral oscillations. Such a relation is obtained by separating the real and

imaginary parts of Eq. VII-163 thus

whence t_.)c
;n COt £_'_. ----- VII-3_

-III-
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r
and /_

VI!-35

where the coefficient B)giver_ by Eq. VII-!8 can be expca_sed in terms of the;

pressure drops thus

, _ _

where
r

The stability number Ns, given by Eq. VII-20: mecomes when expressed in

terms of the pressure drops:

VII-39 i



The critical frequency OJc_ is obtained from Equation Vii-34 and Equation

VII-35, thus

whereas_ the critical transit time _.. is given by Eq. VII-35 and Eq. VII-40_

thus

!

As discussed by Crocco and Cheng [48_ if the inequality given by

Eq. VII-19 is not satisfied, then stability is still possible if the angular

frequency of the perturbation and the transit time satisfy the following _

Iinequalities

_0"> L,2c VII-42 I

and

VII-43

The system is intrinsically unstable if the directions of the inequalities

are reversed. Furthermore, when 2:"

then Eq. VII-I6 has an oseiliatory soIution with an anguIar frequency (J_: .

}-,

_:. "4.

-n3- ;,"

.a
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The preceding results can be plotted against the stability number Ns

given by Eq. VII-20_ i.e._ by Eq. VII-34. For this purpose we shall define

also the period of the oscillation by

T - VII-45

COc

We can form now the ratio of the critical transit time to the period

and express it as function of the stability number Ns3 thus from Eq. VII-45

and Eq. VII-41 we obtain

The critical angular frequency can be also expressed as functions of

Ns_ thus from Eq. VII-40,

= I-- N_ VII-47 ;

Similarly_ by means of Eq. VII-41 we can express the critical transit

time as function of Ns_ thus

I i -! 1

Eq. VII-48, VII-47, and VII-46 are plotted versus the stability number Ns, in Figure

VII-2. The significance of this map is discussed in the following section. '_

-i14-
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VIi.3 Effects of Various Parameters and Methods for Improvin$ Flow Stabilit_

The effects which various parameters have on the propensity to induce flow

oscillation at low subcooling can be evaluated by examining Eq. VII-22 or

Eqo VII-30. It can be seen that the variation of any parameter that tends to

i

decrease the positive value of the left hand side of these equations has a

destabilizing effect. For example, increasing the various pressure drop terms

in the "light" fluid region has a destabilizing effect. Similarly, an increase

of subcooling tends to destabilize the flowo Vice versa, an increase of the

inlet pressure drop or a change of the pump characteristics will stabilize the

£low.

Although the preceding results have not yet been tested against experimental

data_ the form of the simplified stability criterion given by Eq. VII-29, seems

to be correct. This statement is based on a comparison of Eq. VII-29 with the

empirical criterion for predicting boiling instabilities recently proposed by

Serov and Smirnov (66). In the nomenclature of this paper, their criterion is ,

given by

l,

where a and b are two constants to be determined from experiments, D is the

diameter of the pipe; V° is the volume occupied by the steam and (_/_p) is

the variation of the specific volume of the steam with pressure. Consequently,

the second term on the right hand side of Eq. VII-49 represents the effect of

compressibility. This effect was neglected in the present analysis.

It was reported by Serov and Smirnov _661that Eq. VXI-49 was successful

in correlating data and predicting the onset of flow instabilities in boiling of

water at pressure of 30, 50, 70 and lO0 atmospheres.

-115-
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If we neglect the effects of compressibility in Eqo VII-49 and compare it

to Eq. VII-29 and VII-31_ it can be seen that Eq. VII-49 is incorporated in

Eq. VII-29. We note also that this latter equation is a simplified form

of Eqo VII-23; i.e. of Eq. VII-9 which are therefore more general and

complete°

, Further experimental evidence that gives support to the form of

Eq. IV-29 is shown on Figure VII-3 which is reproduced from the paper

by Platt and Wood LI_/. It can be seen from this figure that either

increasing the power input and/or decreasing the mass flow rate has a

destabilizing effect. The same results are predicted by Eqo IV-29.

Perhaps the result of g_eatest significance revealed in the present

investigation is the similarity between the characteristic equations for

predicting "chugging" combustion oscillations and the characteristic

equation for predicting low frequency flow oscillations in heated ducts

at near critical and at super-critical pressures. Since it is well

known (see for exampleC48 ] ) that "chugging" combustion instabilities can

be stabilized by an appropriate selvo-control mechanism_ the results of

this investigation indicate that low frequency flow oscillation at near

critical and at supercritical pressures may be also stabilized. This

important conclusion is demonstrated on Figure VII-2 which shows also the

effect of various parameters on the propensity toward oscillatory flow.

It can be seen on Figure VII-2 that even when the stability number

Ns is less than unityj the flow may be stable if the frequency of the

inlet perturbation is higher than the critical frequency _J_ . Similarly_

the flow can be stable if the total transit time is shorter than the critical

one. The values of _ _ and of (_-K,)¢= _%_ are plotted in Figure VIII-2

in terms of the stability number Ns and of the coefficient B given by ,

Eq. VII-39 Eq. VII-36 respectively.

_. -116- L
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The effects which the variations of the various parameters have on

the flow stability carl be evaluated from Figure VII-2 by considering

whether the variation results in an increase of the stable region. For

example_ it can be seen from Figure VII-2 that for a constant value of Ns

an increase of the delay time has a destabilizing effect because for

sufficiently long delays_ will become larger than _. We note that

this quantitative conclusion is in agreement with the qualitative des-

cription of the destabilizing effect of the time del _y presented in Section

11-4. It can be also seen from Figure VII-2 that increasing the frequency

of the inlet perturbation at a constant value of Ns_ has a stabilizing

effect because for sufficiently high frequency CO will become larger

than _ . Furthermore, Figure VII-2 shows that an unstable flow; i.e._

a flow for which _4w¢ and _1_ _%$can be stabilized by increasing the

value of the stability number Ns.

We close this section by observing that the foregoing conclusions

and results are new and have not yet been verified against experimental

data. If confirmed_ then the results of this study provides a method L

whereby stable operatio_ can De insured on an intrinsically unstable

region.

=!17-
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VIII. Oscillatory Instability at High Subcooling

VIIIol The Characteristic Equation and the Stability Criterion

We shall con_ider now the case of high inlet subcooling which implies a

long time lag [;and a long space lag _ . For such system Eq. VII-3 indicates

that the transit time and the time lag will be of the same order of magnitude.

Since both tinm aelays are long_ we shall neglect the exponential terms in the

characteristic equation given by Eq. V-15_ which reduces then to

which can be rearranged and expressed as

6_ _ I _ _1F" - J')"( F'* FL) -_ FLt
-+ 5 _ _

5T _ Ulll-2

t

Fj * F_ + J"L .... = 0

where the sums of the infl_'ence coefficients are related to the pressure drops

by the following relations



It can be seen that the characteristic equation is a cubic equation of the

form of

"5- S -- -4--S -k -- -_ VIII-7

where the coefficient a, b, c and d are given by the corresponding terms o±

Eq. VII-2.

The proLlem of determining the conditions for neutral stability is solved

again by substituting S = _c_J in Eq. VII-7.

Thus VIII-8

__, _-f__}__f_ t_l
-]19-
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whence upon separating the real and the imaginary parts we have

i

and

VIII-10

CoNsequently for oscillatioas to be possible the coefficients a_bjc and

d in Eq. VII-9 and Eq. VI!-I0 must satisfy the following relation:

c d
-_ VIII-II

whence, the values of the influence coefficients must be such as to satisfy the

fol lo_ing expression:

It can be seen from Eq. VIll-4 and Eq. V!II-6 that, unless the effects

of inertia or of gravity become dominant, the right hand side of Eq. VIII-12

is a positive quantity. Consequently, Eq. VIII-12 indicates that

oscillation can occur only if

_: -120-
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The r,.forc; the flow will be stable if

In vlew of Eq. VIII-5, this inequality can be expressed also as:

_ u_ Q" , Vlll-15
I

For oscillatory flow, Eq. VIII-13 and Eq. Vlll-9 indicate that the angular

frequency will be given by

GOb r I "_-- - "- l - _ VIII- 16 _ :_,./
l

.{

{
which, when expressed in terms of the influence coefficients, becomes

co -- [ F','r_-nF,-(F3'_"-_)i j/_ "i

It should be noted, again, that the values of these influence coefficients Ehould

_atisfy Eq° VIII-!6, i.e. Eq. VIII-12,

j-
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VIII.2 Effects of Various Parameters and Methods for Improvin$ Flo_ Stability

lhe eff_:cts of the various parameters can be evaluated Ly examinlng the

•n__quality givep by Eq. VIII-15. It can be seen that any variation which tends

to increase the value of the left hapd side of this equatlon will have a st_bil_zirg

effect. Thus, the flow ca:: be stabilized by increasing the pressure drops in

the "heavy" fluid region_ whereas it will be destabilized by increasing the

_ressure drops in the "lighf' fluid region.

The effect ol subcooling can be evaluated by comparing Eq. VIii-14 and

mpm.
Eq. VII!-I5 with Eq. VII-20 and Eq. VII-39. Since the velocitie_ in the "llg_t"

fluid regien are higher than the inlet velocity it car be se=n from su(h a I

comparison that the inequality applicable at nfgh subcoolings_ i..e. Eq. V171-14

l

is less restrictive than that corresponding to low subcoolings, i.e., than

Eq. VII-20. Consequently, the flow is more stable at high subcoolings.

However. since Eq. VII-20 indicates also that an increase in subcool _ B destabilizes

the flow, we conclude that this destabilizing effect muot go thro,gh a maximum

at intermediate subcoolings. For boiling systems, this conclusion is in agree-

ment with _he experimental results of Gouse _67) who was apparently the first

to notice this effect. &t super critical pressures, experimental data, which

could be _sed to =est this conclusion, are not Net available.

i
. ,_ .....,_.,__:L_ L
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IX. DISCUSSION

The instability mechanism investigated in this paper was based on the

destabilizing effects of time lags and of density variations in the heated

duct.* It was shown th_t_ in the near critical and in the supercritical

, region_ these destabilizing effects can induce flow excursions as well as

flow oscillations.

The characteristic equation_ i.e._ Eq. V-15_ which predicts tile onset

oF these instabilitles is given by a third order exponenti_l polynomial

with two tilde delays. Because of its complex nature this equation was nct

solved at this time. Instead_ simplified stabil_ty criteria were sought

and derived by assuming that the inlet subcoolilg was either low or high.

This approach seemed preferable for several reasons.

Firsc_ the simple stability criteria are more instructive and helpful

for gaining an understanding of the essential nature of the instability.

Twoj the result shows that the dominance of a particular parameter re-

sults in a particular angular frequency of oscillations (see Eq. VII-40 and

_vIII-17) Consequently_ the cause of instability _n be determined from a

7

trace of the flow oscillation.

*Other mechanisms which may induce flow oscillation were discussed in

Section II-7.
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Finally_ simplzfied stability cziteria such as fq. VI-20_ VII-22_

Vll-42 and VIII-15 are more amenable to a qualitative study of the _ffects

which variations of the various parameters may have on inducing or on pre-

, ventir_ flow excursions and/er flow oscillations. Indeed3 only if the

results from suc:h a study are in agreement with experimental observations_

a detailed quantitative solution of the more complicated characteristic

equation can be justified°

It was discussed in Sections VI-2_ VII-3 and VIII-2 that the pre-

dictzons based on the simplified stability criteria are indeed in qualitative

agreement with the experimental data. This agreement warrants therefore a

more complete study of the characteristic equation together with a quantita-

tive comparison with the experimental data.

Last but not least the simple criteria are most useful in indicating

the improvements and changes i_ the design or in the operation of the system ,

which would insure stable flow. Several such improvements were discussed

in Sections VI-2_ VII-3 and VIII-2. It was noted there that the results of

this study indicate that low frequency thermally induced flow oscillations

in the near critical and in the supercritical pressure region_ could be

stabilized by an appropriate servo-control mechanism. Whether this important

conclusion is indeed correct remains to be shown by future experiments.

-124- I
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Appendix A

The Near-Critical Thermodynamic Region

The success of an investigation concerned with predicting or in-

terpreting the behaviour of a thermo-dydraulic system depends on the

availability and on the accuracy of data giving the values of thermo_,,namic

and transport properties of the fluid i_ the region of interest. It is

the purpose of this appendix to summarize, briefly, the status of present

understanding of thermodynamic phenomena that take place in a region near

the critical thermodynamic _. -_t. For additional discussion, the reader

is referred to the extensive _evi,_ws by R'ce (AI) and by Hammell (A2).

Consider a fluid at a pressuce slightly above the critical pressure

flowing through a heat exchanger. If the temperature of the fluid at the

entrance is considerably below the critical temperature, i.e., T<_'T , the
¢

fluid will h_',e a density close to that of a liquid whereas at the exit, .,,

if the fluid temperature is considerably above T , the density will ap-
c

proximate that of a perfect gas. Consequently, in passing through the

heat exchanger the fluid w11.1 undergo a change of properties from a.liquid,-

like fluid at the entrance to a gas-like fluid at the exit. Since the

properties of the fluid will affect the performance of the system is

becomes necessary first'to examine the nature of this change and then to

express it quantitatively.

At subcritical pressures the presence of two phases is distinguished

by a difference in density and by the existence of an interface between

the phases. At supercritical pressures such a distinction cannot be made •

because at these pressures as well as at the critical one the interface,



the beat of va!_orizaticn, as well as the surface energy= all vanish.

There is no general agreement as to the structure of the medium and

of the mechanism cf ph,qe transition in the critical and Jn the supercritical

region. Different explanations and descriptions are advanced by different

authors.

Some authors like Rosen (A3) and Semenchenko tA4) analyze t'.e thermo-

dynamic characteristics of a medium in the s'_percritical region by assuming

an equaticn cf state like _h_ Van der Waais' or the Dieterici equations.

Hirschfe!der, Curtis and Pird (A5] descri2e the fluid in tbe neighbor-

hood of the critical point as consisting of a large number of clusters of

molecules of various sizes. The system can be idealized by assuming that

the density can he described by a disuribution function which has for its

two limits the densities of the two phases. The fluctuation in density,

which can be expected from the theory of fluctuations, becomes very large

in the vicinity of the critical point, lhese large fluctuations and the

formation of molecular clusters in the meighborhood of this point result

in a large increase of the specific heat at constant volume.

Mayer and co-_Jorkers (A6) propose a theory of condensation based on

t':e cluster theory e£ imperfect gases fro_ which they predict the existence

of an anomalous region aLove the temperature of the usually observed critical

point, This region extends up to the highest isotherm for which (_P/_v) T,

has anywhere a zero wllue. In this region, isotherms exist having no vari-

ation in pressure over a finite density range, but having at all densities

continuou_ derivatives with respect to pressure. Various aspects of thi8

theory are discussed further in (AS).
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A great number of authors distinguish two phases in the supercritical

region: a heavy, liquid-like phase and a light, gas-like phase. The

difference between their results stems from the different approaches used

to locate the boundary between the two phases and from the different

descriptions of the characteristics of the phase transition.

In a preceeding section we have discussed already Goldman's (A7-A8)

descriptions of the supercritical region and of the similarity between tNe

heat transfer and flow processes at supercritical pressure and those that

take place at subcritical pressure ,uring the process of boiling. However,

Goldman did not formulate, quantitatively, the problem nor did he say how

and where to locate the boundary or the region between the liquid-like and

the gas-like phase.

Following Goldman, Hendricks et al (A9) consider "boiling-like"

phenomel at supercritical pressures and, in analogy with boiling, they

introduce a specific volume for the fluid of the form of Eq. AI.

X

_ = _f + -_---- ('_g - _f_ (A-l)

In place of the quality they introduce a weighting function for the heavy i
J

and light species. However, no reference is made in their paper as to how

to determine, quantitatively, this distribution function.

In numerous textbooks (A-10) among others, the boundary between the

liquid and the gas in the supe_critical region is taken to be the critical

isotherm. O_her authors like Thiesen (A-II), Trautz and Ader (A-12)

among others take the critical isochor for this boundary and consider it as

the extension of the saturation line into the supercritical region. ,
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In the subcritical region various thermodynamic properties such

as the specific heat, the compressibility, the coefficient of thermal ex-

pansion and others change discontinuously or reach a maximum value at the

coexistence, i.e., the saturation line. This line can be therefore looked

upon as the locus of points for these discontinaities or maxima. Conse-

quently, numerous authors consider the extension of the saturation line

into the supercritical region to be the line which is the locus of points

where the thermodynamic properties listed below reach a maximum:

q_- _P ,_ T2T T

_T 2Jp _ T p

(_2 i

 p2); o (A-4)

_2 u (_Cv_ = (O2p) = 0 (A-5)T v

Several authors (A-13 - A-17) assume that one single llne represents

the locus of points of all these maxima. This is indeed the case for sub-

=ritical pressure where the spturation line is the locus for all discontinuities.

However, the experiments of Kagauer (A-18) avd of Sirota and co-workers (A-19)
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show that this is not the case but that for a given supercritical pressure

different thermodynamic properties reach a maximum value at different

temperatures. Thus, for each of the thermodynamic propertzes, i.e.,

specific heat Cp, the coefficient of thermal eypansion, etc., there is a

different line which represents the locus of the maxima. This _a.ises the

question which of these lines can be regarded to be the extension of the

saturation line in the supercritical region, i.e., which of these lines can

be considered as the boundary between the lia-,id-like and the gas-like

phase.

Plank (A-20) and Semen_l..:! (A-21) consider the line along which

T

to be the extension of the saturation line in the supercritical region. ,,

Eucken (A-13), however, takes the curve represented by Eq. A-2 for this

>

exteusion; whereas numerous authors (A-8, A-9, A-22 - A-25) take Eq. A-3. i

Of particular interest to the analysis of this paper are the results

reported in (A-14, A-17, A-19 and A-16) which w111 be therefore discussed !
|

in more detail, i

Sirota and co-workers (A-19) discuss the transition phenomena at suP-

critical and supercritical pressures in terms of the Frenkei's theory of

heterogeneous fluctuations (A-14, A-26). According to this theory in any

gas at subcritical temperature heterogeneous fluctuations result in the

formation of molecular complexes which can be regarded as finely dispersed



i

nuclei of a phase within a homogeneous phase. In ap@rosching the saturation m_

line the fluctuations increase and "micro-heterogeneities" appear in the

macroscopic, hemogeneous phase. This mar_s the beginning of the "pre-transi-

tion region" which is characterized by the fact that various thermodynamic

properties exhibit variations which become more pronounce4 as the saturation

line is approached, lhis accounts for the anomalous effects of the propel-

ties in the vicinity of the saturation ]inc. At the sat,,ratJon line the

properties change in a discontinuous fashion which is a characteristic of

phase transitions of the first order. Pq the pressure is increased the

effect of heterogeneous fluctuations increases whereas the effect: of phase

change, i.e., of the discontinuous change of properties becomes less

important and disappears at and above the critical point. Since the change

of phase at subcritical prpssure is characterized by an obsorption of energy

and an expansion of volume the transition at supercritical pressure should

be characterized by the maximum values of c and of the thermal expansion,
P

i.e., of ( _v/_T)p. See Figures A-I an4 A-2 which show these properties

for oxygen at supercritical pressures. However, the authors of (A-19) show

from experiments that at a given pressure the two maxima do not occur at |
J

-- are correlated by i Kthe same temperature. The values of the m_xima for Cp

c - c

Pma3," P_ 9.05
- + i.30 (A-B)

"R p
1

P
crit
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which is valid for non-polar liquids when P/Pcrit 1o5. In the above

equation, R _s the gas constant whereas c is the specific heat for an
Pg

ideal gas. This equation shows that the value of the maximum c decreases
P

as the pressure is increased. The temperatures where these maxima occur

were correlated by
i

1 _ i _
T%¢ TGr,t -I),_;t (A-9)

This temperature, denoted here by T . is often referred to in the litera-
pc"

ture as either the pseudo-critical temperature or the transposed critical

temperature°

Both Sirota (A-19) and Kaganez (A-18) show that the locus of the maxi-

mum values of c along isobars, i.e., Eq. A-3, is the extension of the sat-
P

uration line in the supercritical region.

Urbakh (A-17) also considers the effect of heterogeneous fluctuations

at subcritical and supercritical pressures. He shows that as the temperature

iq increased and the surface tension decreases the heterogeneous fluctuations

increase and reach a maximum at the critical point. The location of the

critical point depends on the surface tension; moreover, it can be changed I

by introducing surface active agents. The critical point divides two regions

which can be distinguished by the nature of the phase transition. At sub-

critical pressure the transition is characterized by the discontinuities

of the properties and by the presence of a macroscopic second phase ,aithin

the originally homogeneous phase. At supercritical pressures the second

phase is finely dispersed in the form of clusters. Furthelmore, in this

region the properties do not change disQontinuously but vary in a continuous

way. At subcritical pressures the effect of heterogeneous fluctuations

becomes evident in the "pretransition region" as a variation of properties

, -135-
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In the vi¢inlty of the saturation line. This is shown in Figure A-3 which

is the vo]ume-temp_rature p]ane for oxygen. At a subcritical pressure,

say at P = 0.9, the line i' - 2' is the phase transition of the firstr

order occurring at a constant temperature. The effect and magnitude of

the fiu_tuation in specific volume in the two pre-transition regions is
i

shown as the lines 1 - I' and 2 - 2' The fluctuation 1 - i' is caused by the

formation of vaper nuclei in the pre-transition region of the liquid.

Similarly, 2 _ 2' are the fluctuations caused by the formation of liquid

nuclei in the pre-transition region of the gas. lu can be seen from this

Figure that at low pressures in the subcritical region the effect of

fluctuation is negligible when compaced to the phase transition of the

first order. For example, at P = 0.5, they are almost absent. Increas-r

ing the pressu _ increases the e_feot of heterogeneous fluctuations which

reach a maximum at the critical point. At this point and above it the)

phase transition of the first order vanishes so that only the effect of

heterogeneous fluctuations remains. Urbakh notes further than with the

phase transition and the fluctuations are associated energy requirements

which can be determined from the T - s or v - s diagrams shown on Figures A-4

and A-5. At low pressure the only energy required is heat of vaporization i

for the phase transition of the first order, thus I

I
hfg '= T (s2 - Sl') (A-10)

However, as the pressure is increased the energy associated with the

fluctuation becomes important. At supercritical pressure it is the only

which remains, and it can be determined either from Figure A-4 or A-5,

thus

_£ = T (s2 - Sl) (A-f1)
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Frenkel (A-14, A-26) considers two variations: a transition of the

lirst order at subcritical pressure and a transition of the second order at

supercritical pressure. The first, characterized by discontinuities of

properties, is described by Clausius-Clapeyron's equation:

dP hfg-- |
(A-12)

dr T (v - vf)o g

a_d takes place at a constant temperature T . The phase transition ofo

the second order takes place over a _erJp=rature interval _ T = T2 - TI,

in which the properties change continJcuslf. In this temperature interval

and (_v/_ reach a maximum. FiguresAl andA2 show these varia-
both Cp T)p

tions for oxygen at three supercriticai pressures. As a generalization

of the transition of the first order Frenkel formulates the equivalent

energy of transition for the second order transition, thus

_ rtc(S 2 sI) I T2 _= - = _ Cp dT (A-13)j ,
T1 ;

where T is the temperature corresponding to the peak of c and _c is
tc p p

the value of c above the "normal" value, i.e., above the dashed line on
p--

Figure I. Similarly, the change of volume is given by

T2

v2 - Vl = _I I_-_l dT (A-14)
T1 P
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Eq. A-13 and Eq. A-14 represent the additional increase of volume and the

additional heat absorbed in going from the liquia-like state to the gas-

like state at constant pressure. In place of Clausius Clapeyron's equation

Frenkel uses the equation derived by Ehrenfest (A-27) to describe transitiens

of the second order at the "lambda point" of helium and at the "Curie point"

of feromagnetic metals, thus

dP _ Cm
d-_ = (A-15)

P

where _Cm and _ (_v/_T)p are the maximum values of Cp and of ( v/ T)p

above the dashed lines in FiguresAl andA2. Varicus criticisms which have

been made with respect to Ehrenfest equation are discussed in (A-28). Also,

various authors (A-18, A-19) criticize the use of Eq. A-15 for the supercritical

region because the temperatures where c and (_v_T)p reach theirp

respective maximum values are not the same. Consequently, the value of T

in Eq. A-15 is somewhat arbitrary.

Semenchenko (A-4, A-16, A-29) considers the medium in _he supercritical

region to consist of two phases which are separated by a region in which the

prcperties change rapidly but continuously. It was already noted that he

takes the locus of points given by Eq. A_7 to represent the extension of

the saturation line in the supercritical region. He notes that at subcritical

pressures the phase transition is accomplished by absorbing an amount of

energy given by Eq.A]O and by doing an amount of work given :".

w = P (v2 - Vl) (A-t6) iJ'"
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However, since in the supercritical region there is no discontinuous change

of volume and of entropy, Semenchenko notes that Eq. A-IO and A-15 must be

modified and replaced by:

/2_ = c dT (A- 17) ,
P

T1

and

v 2

v I T

For additional discussion of critical phenomena the reader is referred

to the extensive reviews by Rice (A-I) and by Hammell (A-2).

From the preceding review of the p_esent understanding of thermodynamic

phenomena in the supercritical region we can make the following conclusions:

i) There is no general agreement as to the structure of the medium

and of the mechanism of phase transition in the critical and super-

critical region, i

i

2) There is a general agreement that large variations of density and

o specific heat are present, i

i3) .ost of the authors consider the supercritical region to consist

of two phases -- a liquid-like and a gas-like phase. !

4) There is no general consensus as to the location of t|_=boundary

or of the transition region between these two phases, although a

large number of investigators consider this demarkatlon to take

place along the llne which is the locus of points where the

specific heat at constant pressure reaches a maximum.
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5) The_e is no general consensus as to the nature of phase transitien

at supercritical pressures aN of the energy required to bring it

about. Three different methods for _valuating this energy of

transition have been proposed: I) the graphical method of

Urbakh (A-J7) resulting in Eq. A-If; 2) the second order transition

proposed by F_enkel (A-14, A-26) given by Eq. A-13, and Eq. A-15; and

3) the pseudo transition region proposed by Semenchenko (A-4, A-16,

A-29) given bye. _ and Eq. A-17. By examining the proposed methods

and equations, i.e., Eq. A-II, Eq. A-15 and A-17_ it can be seen that

these different methods will yiel_ different values for the transition

energy.

It is evident from the preceding results that the success of any analysis

concerned with the mechanism of f]ow oscillations and of heat transfer at

supercritical pressures will depend to a great extent upon the ability to

describe more accurately the thermodynamic state of a fluid and the transi-

tion phenomena that take place at supercritical pressures.
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Appendix B

The Steady State Pressure Drop
!

In this Appendix we shall derive an expression for the steady state

pressure drop of a fluid whose properties change from a liquid-like at the

entrance to a gas-like at the exit of the heat exchanger. The derivation

and the resulting flow excursion criterion applicable to fluids at critical

and supercritical pressures were first derived by the writer in the Second

Quarterly Progress Report. They are reproduced here for reasons of completeness.

The pressure drop across a heated length L is the sum of the acceleration,

pressure drop, the frictional pressure drop _nd the pressure drops across

the inlet and exit flow restrictions. Since the pressure drop depends on

%
the fluid, it becomes necessary to examine first property changes along the

heated duct.

B.I _The S_stem - Three Region Apprgximat_on 1

The system analyzed in this Appendix is shown in the Figure B-I.

A circular duct is uniformly heated at a rate of Q, over a total heated

length L. Two flow restrictions are located at the entrance a_d at the exit

of the heated section. A fluid at an initial temperature TI, i.e., with the

enthalpy iI, flows at a constant mass flow rate _f . In passing through the

heated duct the specific volume and the enthalpy of the fluid increase (See

Fig. B-I). The fluid undergoes, therefore, a transformation from a liquid-

llke to a gas-llke fluid.

. Figure B-2 shows the'_ -i relation for oxygen at a reduced pressure of

_ P = I.I. It can be seen from this figure that the increase of specific
_ r
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volume from a liquid-like state to a gas-like state occucs gradually over

an enthalpy interval.

In order to simplify the problem, we shall assume that the entire

, transformation can be approximated by considerding three re_ions. In the

first region of length If, between stations 0 and Q in Figure B-I, the

heavy clusters resemble a liquid. In this region the specific volume of

the fluid is constant having a value of vf. We shall assume that the com-

plete transformation, froLn heavy to light clusters, takes place within the

transition length It, i.e., between st'ations Q and @ . In this transition

region the specific volume of the fluid changes from a value of vf to a value

of v . The enthalpy change associated with this expansion is given by .-
g2

L._=_-I_ In the third region of length ig, the light clusters

resemble a gas. The specific volume of the fluid in this region can be

approximated by that of gas and, in particular, by that of a perfect gas.

It is apparent from the discussion in Appendix A that the initial and

the final conditions of the transition region, i.e., the conditions at stage @

and @ respectively, will depend upon the model selected for describing

the pseudo-phase transition in the supercritical region. This follows from

the fact that the temperature or the enthalpy that marks the start of the

pseudo-phase transition will determine the location of station @, whereas

station _ will depend on the energy required to complete
the location of

the tran=ition from heavy to the light clusters. In this report we shall

W

denote this energy requirement by _ which can be determined by the best

three region approximation indicated in Figure B-I.

As discussed in the preceeding sections, we are considering in this |

L

, report only the effects of density variation on the flow stability.

-145-
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Consequently, we shall assume tha_ both the friction factor and the heat trans-
#

fer are constant. The first assumption is quite reasonable if the _!ow remains

turbulent throughout the duct. The ilmitation of the second assumption may ..

become significant if variations of transport properties in the transition

region have an important effect on the stability. We note, however, that

both assumptions can be removed permitting an extension of the analysis to

consider the effect of variations, other than density, on the initiation of

flow oscillations.

B.2 The Frictional Pressure Drop

The fric£ional pressure drop in the system is given by the sum of the

frictional pressure drops across the segments If, it and ig and the pressure

drops across the inlet and exit flow restrictions, thus --

B-I

For a constant friction factor f, the pressure drop across a segment ._

of length 1 is given by

where the lengthwise average specific volume is given by

Z
# /

---_{-_/'%_% B-3 .'"
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Consequently, in order to evaluate the frictional pressure drops for

the three segments it is necessary to evaluate the specific volume ior each

segment. Thls can be done by relating first the specific volume to enthalpy

' and then to express the enthalpy in terms of the heated length. This latter

relation can be obtained from energy considerations.

Denoting by Q, the total rate of energy addition to the system and by

the constant heat flux density, have for duct
we a

_ B-4

where _ , is the heated perimeter. It follows from Eq. B-4 that

L

where the total length is given by ._

Furthermore, for a system with constant mass flow rate the change of

enthalpy is given by

l

where we have ileglected the kinetic energy of the fluid. It follows then

: from Eq. B-7 avd B-4 that
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and in view of Fq. B-5 we obtain
0

Substitutirg Eq. B-4, B-3 Jn Eq. B-2, we obtain the pressure drop across

a heated segment where the enthalpy of the fluid ch.anges from i to i +_i,

thus

2_ Q B-10
!

For a three region approximation the relation between v(i) and i

is shown in Figure B-I. We shall consider now each region separately.

a) The Liquid-Like Region

In this region the specific volume of the fluid is constant a_(Iequal

to vf (See Figure B-I). In the segment of length if, the enthalpy c,f the

fluid increases from i_ to i2. The frictional pressure drop across If be-

comes then

b) The Transition Region

In the transition region we shall approximate the _elation between the

specific volume v, and the enthalpy i, by a linear equatlo_. The average

specific volume in this region can be written then as:

; = _ -.=) +i "z. Z
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Denoting by _l,l_ LZ:52) _ the chang_ in enthalpy, the frictional

pressure drop in the transitional region then becomes

c) The Gas-Like Region

In view of the assumption that in this region the flu_4 has the prop-

erties of a perfect gas we have, for a constant pressure process, the fol-

lowing expression for the specific volume

-- �%--(i-_,)

Inserting this expression in Eq. B-10 we obtain

The change _f entbalpy_32 ' can be expressed also in terms of the total <

heat input thus from an energy balance I

• i
&_=_ Q _L22_ALzl "

_- B-16

Inserting this expression in Eq. B-15, we obtain for the frictional

pressure drop in the gas-llke region the following expression

B-17
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B.3 The Inlet and Outlet Pressure Drops

Denoting by k. a numerical coefficient that takes into account thei

geomet-y of the restriction and of other losses like vena contracta etc.,

, ve have the inlet pressure drop

i

B-18

Similarly, we define by k a numeric_l coefficient that accountse

fer the geometr] and the losses at the exit. The exit pressure can be then

expressed as:

B-19

?

which, in view of Eq. B-J4 and B-16, can be also writte:.

,:j B-20 )

B.4 The Acceleration Pressure Drop

The acceleration pressure drop is given by

B-21

as
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r

1

then

A B-23

The total acceleratiol, pressure dr_# _ _dired to accelerate a fluid of

specific volume vf at the inlet up to the exit where it attains a specific

volume Vg3 is given therefore by

Z

l_serting Eq. B-14 in Eq. 24 we obtain

or in view of Eq. B-16 we have

L

B.5 The Total Pressure Drop

The total pressure drop is obtained by summing gq. B-26, B-20, B-IS,

B-17 and B-II, thus after some rearrangement

.- =lSl-

r
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where the coefficients a_ b and c are given by .::
t

1DA_ __

' ' ° : B-28

The form of Eq. B-27 is relevant to the present problem because it shows

that, for some operating conditions, the pressure drop may decrease with

increasing mass flow. This consequence of the negative term on the right-

hand side of Eq. B-27o

B.6 The Two ReKion Approximation

Following the derivation of the pressure drop given in the preceding

section it was observed by Dr. R. Fleming, from the Research and Development

Center at G.E., that instead of considering a three region approximation as
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sho_,'n in Fig. B-I, th _ problem can be further simplified by considering a

two-regiJn a_proximation indicated in the sketch below

I

/

I _- ..

Two-Region Approximation

In the two-region approximation the transition region shown in Fig7 B-i

and B-2 is neglected, i.e., it = O, i2 = iT, _g2, = vf. It is assumed,

therefore, that the change from a liquid-like to a gas-like fluid occurs in-

stantaneously in a plane perpendicular to the flow when the enthalpy reaches

a value of i2 indicated on the sketch above.

We can further amplify the preceding observation. It can be seen

from Fig. B-2 that the enthalpy which corresponds to the transition point

can be approximated by the enthalpy at the transposed critical temperature

Ttc, i.e., by the enthalpy that corresponds to the maximum value of the

specific heat at constant pressure c . Consequently, with a two-region
P

approximation one can consider that the liquid-like state persists unt_l

the temperature of the bulk fluid reaches a value that is equal to the

transposed critical (or pseudo-critical_ temperature. Above that temperature
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the fluid behaves as a gas. Therefore, the transposed critical temperature

.

Ttc, can be regarded as the boundary between the liquid-like and the gas-like

states. It was discussed already in Appendix A, that both Sirots (A-19)

and Kaganer (A-18) have shown that this temperature is the extension of _he

saturation line in the supercritical region. Figure A-I in Appendix A

shows that the transposed critical temperature increases with increasing

values of reduced pressure. It can be concluded therefore that the value

of enthalpy corresponding to this temperature and to the transition point

shown in Fig. B-2 will also increase with increasing reduced pressures.

For a two-region approximation the form of Eq. B-27 remains unchanged,

however, the coefficients a, b and c given by Eq. B-28 and B-29 and B-30

reduce to:

q

i
J

B-33

j,-
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l

which we obtain by setting _i2,2 = 0, _Vfg = 0, Vg20 = vf in Eq. B-28_

B-29 and B-30.

.. As noted by Dr. Fleming the use of the two-region approxi:_ation simplifies

considerably the iorm cf uh_ coefficients a, b and c. The three region

approximation retains however a closer similarity with phenomena that take

place at sutcritical pressure. The transition region shown in Fig. B-I can

be regarded an corresponding to the boiling region at subcritical pressures.

The liquid and the gas region in Fig. B-I would then correspond to the pre-

heating and to the superheating region in a once-through boiling system

where the liquid at the entrance is subcooled and the steam at the exit is

superheated. We have noted already in Appendix A that the enthalpy change

_L_% may be considered as _eing equivalent to the heat of vaporization

hfg.

The selecticn of either the two or three region approximation should

be determined by the desired simplicity _nd _cc_:_acy. The important result

is however the fact that, because of the negative term on the right-hand side

of Eq. 27, there exist a possibility of a decrease in pressure drop with

increasing flow in the supercritical thermodynamic region. It was shown

in the body of the report that such a pressure drop vs flow relation can

lead either to excurb_ve flow or to oscillatory flow.
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Appendix C

Yhe upper and lower bounds of the integrals

The integrals given by Eq. IV-94 _ IV-101 and IV-ill can be all

!

expressed in the form of

- _--_-I ut(_ L-f-l c-1
I

which integrates in

It can be expressed by

i
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b

However_ in view of Eq. IV-34 and IV-28 we have

C-4 .

and

C-5

I

C-6

whence we can express Eq. C-3 as

_]) - s-_- _ -I ) L_, J "

By comparing Eq. C-7 with Eq. C-I it can be seen that they are

of the same form.

In view of Eq. C-21 the integration of Eq. 0-7 yields:
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which_ after some rearrangement_ can be expressed in the form of

Eq. IV-III_ thus

In order to obtain the upper and lower bound ol Eq. IV-943

IV-J01, IV-ill we note that Eq. C-I can be written as

where F is the mean value of F given by

IV ( I

,L-o, .___ J t _ J '<
_0 " ++

I +
+

whence by the mean value thereom +



which together with Eq. C-IO yields the upper and lower bounds given in
t

Eq. IV-95_ IV-lOS and IV-l16_ thus

i

For example_ from Eq. C-7 and Eq. C-12 we obtain

F

since

-_ _/,_ -_c_-._)- _ e c-15 ,
U5 _

it can be seen that Eq. C-14 can be put in the form of Eq. IV-II6.

1

t
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